Cargando…
Improving seasonal forecasts of air temperature using a genetic algorithm
Seasonal forecasts of air-temperature generated by numerical models provide guidance to the planners and to the society as a whole. However, generating accurate seasonal forecasts is challenging mainly due to the stochastic nature of the atmospheric internal variability. Therefore, an array of ensem...
Autores principales: | Ratnam, J. V., Dijkstra, H. A., Doi, Takeshi, Morioka, Yushi, Nonaka, Masami, Behera, Swadhin K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726601/ https://www.ncbi.nlm.nih.gov/pubmed/31484983 http://dx.doi.org/10.1038/s41598-019-49281-z |
Ejemplares similares
-
Malaria predictions based on seasonal climate forecasts in South Africa: A time series distributed lag nonlinear model
por: Kim, Yoonhee, et al.
Publicado: (2019) -
Publisher Correction: Malaria predictions based on seasonal climate forecasts in South Africa: A time series distributed lag nonlinear model
por: Kim, Yoonhee, et al.
Publicado: (2020) -
Long-lead Prediction of ENSO Modoki Index using Machine Learning algorithms
por: Pal, Manali, et al.
Publicado: (2020) -
Decadal climate predictability in the southern Indian Ocean captured by SINTEX-F using a simple SST-nudging scheme
por: Morioka, Yushi, et al.
Publicado: (2018) -
Predicting maximum temperatures over India 10-days ahead using machine learning models
por: Ratnam, J. V., et al.
Publicado: (2023)