Cargando…
REVEL and BayesDel outperform other in silico meta-predictors for clinical variant classification
Many in silico predictors of genetic variant pathogenicity have been previously developed, but there is currently no standard application of these algorithms for variant assessment. Using 4,094 ClinVar-curated missense variants in clinically actionable genes, we evaluated the accuracy and yield of b...
Autores principales: | Tian, Yuan, Pesaran, Tina, Chamberlin, Adam, Fenwick, R. Bryn, Li, Shuwei, Gau, Chia-Ling, Chao, Elizabeth C., Lu, Hsiao-Mei, Black, Mary Helen, Qian, Dajun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726608/ https://www.ncbi.nlm.nih.gov/pubmed/31484976 http://dx.doi.org/10.1038/s41598-019-49224-8 |
Ejemplares similares
-
A Bayesian framework for efficient and accurate variant prediction
por: Qian, Dajun, et al.
Publicado: (2018) -
Image Embeddings Extracted from CNNs Outperform Other Transfer Learning Approaches in Classification of Chest Radiographs
por: Gozzi, Noemi, et al.
Publicado: (2022) -
Machine learning outperforms clinical experts in classification of hip fractures
por: Murphy, E. A., et al.
Publicado: (2022) -
Revelation at Gargamelle
Publicado: (1978) -
Révélations atomiques
por: Cardan, J
Publicado: (1954)