Cargando…
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
The inapplicability of amino acid covariation methods to small protein families has limited their use for structural annotation of whole genomes. Recently, deep learning has shown promise in allowing accurate residue-residue contact prediction even for shallow sequence alignments. Here we introduce...
Autores principales: | Greener, Joe G., Kandathil, Shaun M., Jones, David T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6726615/ https://www.ncbi.nlm.nih.gov/pubmed/31484923 http://dx.doi.org/10.1038/s41467-019-11994-0 |
Ejemplares similares
-
Recent developments in deep learning applied to protein structure prediction
por: Kandathil, Shaun M., et al.
Publicado: (2019) -
Prediction of interresidue contacts with DeepMetaPSICOV in CASP13
por: Kandathil, Shaun M., et al.
Publicado: (2019) -
Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterized proteins
por: Kandathil, Shaun M., et al.
Publicado: (2022) -
Sequence Memory Constraints Give Rise to Language-Like Structure through Iterated Learning
por: Cornish, Hannah, et al.
Publicado: (2017) -
Predicting Protein Dynamics and Allostery Using Multi-Protein Atomic Distance Constraints
por: Greener, Joe G., et al.
Publicado: (2017)