Cargando…
Integrative Analysis of Cancer Omics Data for Prognosis Modeling
Prognosis modeling plays an important role in cancer studies. With the development of omics profiling, extensive research has been conducted to search for prognostic markers for various cancer types. However, many of the existing studies share a common limitation by only focusing on a single cancer...
Autores principales: | Wang, Shuaichao, Wu, Mengyun, Ma, Shuangge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727084/ https://www.ncbi.nlm.nih.gov/pubmed/31405076 http://dx.doi.org/10.3390/genes10080604 |
Ejemplares similares
-
Horizontal and vertical integrative analysis methods for mental disorders omics data
por: Wang, Shuaichao, et al.
Publicado: (2019) -
A Selective Review of Multi-Level Omics Data Integration Using Variable Selection
por: Wu, Cen, et al.
Publicado: (2019) -
Clustering multilayer omics data using MuNCut
por: Teran Hidalgo, Sebastian J., et al.
Publicado: (2018) -
Histopathological Imaging–Environment Interactions in Cancer Modeling
por: Xu, Yaqing, et al.
Publicado: (2019) -
ZINBMM: a general mixture model for simultaneous clustering and gene selection using single-cell transcriptomic data
por: Li, Yang, et al.
Publicado: (2023)