Cargando…

Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1

BACKGROUND: Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in ATXN1 gene resulting in an expansion of polyglutamine repeats in the ATXN1 protein. Unfortunately, there has yet been any effective treatment so far for SCA1...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Pei-Jiun, Yeh, Chang-Ching, Huang, Wan-Jhen, Min, Ming-Yuan, Huang, Tzu-Hao, Ko, Tsui-Ling, Huang, Pei-Yu, Chen, Tien-Hua, Hsu, Sanford P. C., Soong, Bing-Wen, Fu, Yu-Show
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727337/
https://www.ncbi.nlm.nih.gov/pubmed/31508229
http://dx.doi.org/10.1186/s40035-019-0166-8
_version_ 1783449227832066048
author Tsai, Pei-Jiun
Yeh, Chang-Ching
Huang, Wan-Jhen
Min, Ming-Yuan
Huang, Tzu-Hao
Ko, Tsui-Ling
Huang, Pei-Yu
Chen, Tien-Hua
Hsu, Sanford P. C.
Soong, Bing-Wen
Fu, Yu-Show
author_facet Tsai, Pei-Jiun
Yeh, Chang-Ching
Huang, Wan-Jhen
Min, Ming-Yuan
Huang, Tzu-Hao
Ko, Tsui-Ling
Huang, Pei-Yu
Chen, Tien-Hua
Hsu, Sanford P. C.
Soong, Bing-Wen
Fu, Yu-Show
author_sort Tsai, Pei-Jiun
collection PubMed
description BACKGROUND: Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in ATXN1 gene resulting in an expansion of polyglutamine repeats in the ATXN1 protein. Unfortunately, there has yet been any effective treatment so far for SCA1. This study investigated the feasibility of transplanting human umbilical mesenchymal stem cells (HUMSCs) into transgenic SCA1 mice containing an expanded uninterrupted allele with 82 repeats in the ATXN1-coding region. METHODS: 10(6) human umbilical mesenchymal stem cells were transplanted into the cerebella at 1 month of age. RESULTS: HUMSCs displayed significant ameliorating effects in SCA1 mice in terms of motor behaviors in balance beam test and open field test as compared with the untransplanted SCA1 mice. HUMSCs transplantation effectively reduced the cerebellar atrophy, salvaged Purkinje cell death, and alleviated molecular layer shrinkage. Electrophysiological studies showed higher amplitudes of compound motor action potentials as indicated by increasing neuronal-muscular response strength to stimuli after stem cell transplantation. At 5 months after transplantation, HUMSCs scattering in the mice cerebella remained viable and secreted cytokines without differentiating into neuronal or glia cells. CONCLUSIONS: Our findings provide hope for a new therapeutic direction for the treatment of SCA1. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40035-019-0166-8) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6727337
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-67273372019-09-10 Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1 Tsai, Pei-Jiun Yeh, Chang-Ching Huang, Wan-Jhen Min, Ming-Yuan Huang, Tzu-Hao Ko, Tsui-Ling Huang, Pei-Yu Chen, Tien-Hua Hsu, Sanford P. C. Soong, Bing-Wen Fu, Yu-Show Transl Neurodegener Research BACKGROUND: Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in ATXN1 gene resulting in an expansion of polyglutamine repeats in the ATXN1 protein. Unfortunately, there has yet been any effective treatment so far for SCA1. This study investigated the feasibility of transplanting human umbilical mesenchymal stem cells (HUMSCs) into transgenic SCA1 mice containing an expanded uninterrupted allele with 82 repeats in the ATXN1-coding region. METHODS: 10(6) human umbilical mesenchymal stem cells were transplanted into the cerebella at 1 month of age. RESULTS: HUMSCs displayed significant ameliorating effects in SCA1 mice in terms of motor behaviors in balance beam test and open field test as compared with the untransplanted SCA1 mice. HUMSCs transplantation effectively reduced the cerebellar atrophy, salvaged Purkinje cell death, and alleviated molecular layer shrinkage. Electrophysiological studies showed higher amplitudes of compound motor action potentials as indicated by increasing neuronal-muscular response strength to stimuli after stem cell transplantation. At 5 months after transplantation, HUMSCs scattering in the mice cerebella remained viable and secreted cytokines without differentiating into neuronal or glia cells. CONCLUSIONS: Our findings provide hope for a new therapeutic direction for the treatment of SCA1. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s40035-019-0166-8) contains supplementary material, which is available to authorized users. BioMed Central 2019-09-05 /pmc/articles/PMC6727337/ /pubmed/31508229 http://dx.doi.org/10.1186/s40035-019-0166-8 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Tsai, Pei-Jiun
Yeh, Chang-Ching
Huang, Wan-Jhen
Min, Ming-Yuan
Huang, Tzu-Hao
Ko, Tsui-Ling
Huang, Pei-Yu
Chen, Tien-Hua
Hsu, Sanford P. C.
Soong, Bing-Wen
Fu, Yu-Show
Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1
title Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1
title_full Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1
title_fullStr Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1
title_full_unstemmed Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1
title_short Xenografting of human umbilical mesenchymal stem cells from Wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1
title_sort xenografting of human umbilical mesenchymal stem cells from wharton’s jelly ameliorates mouse spinocerebellar ataxia type 1
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727337/
https://www.ncbi.nlm.nih.gov/pubmed/31508229
http://dx.doi.org/10.1186/s40035-019-0166-8
work_keys_str_mv AT tsaipeijiun xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT yehchangching xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT huangwanjhen xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT minmingyuan xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT huangtzuhao xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT kotsuiling xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT huangpeiyu xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT chentienhua xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT hsusanfordpc xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT soongbingwen xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1
AT fuyushow xenograftingofhumanumbilicalmesenchymalstemcellsfromwhartonsjellyamelioratesmousespinocerebellarataxiatype1