Cargando…
Synthesis, molecular docking and biological potentials of new 2-(4-(2-chloroacetyl) piperazin-1-yl)-N-(2-(4-chlorophenyl)-4-oxoquinazolin-3(4H)-yl)acetamide derivatives
In the present study, a series of 2-(4-(2-chloroacetyl)piperazin-1-yl)-N-(2-(4-chlorophenyl)-4-oxoquinazolin-3(4H)-yl)acetamide derivatives was synthesized and its chemical structures were confirmed by physicochemical and spectral characteristics. The synthesized compounds were evaluated for their i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727350/ https://www.ncbi.nlm.nih.gov/pubmed/31517312 http://dx.doi.org/10.1186/s13065-019-0629-0 |
Sumario: | In the present study, a series of 2-(4-(2-chloroacetyl)piperazin-1-yl)-N-(2-(4-chlorophenyl)-4-oxoquinazolin-3(4H)-yl)acetamide derivatives was synthesized and its chemical structures were confirmed by physicochemical and spectral characteristics. The synthesized compounds were evaluated for their in vitro antimicrobial (tube dilution technique) and anticancer (MTT assay) activities along with molecular docking study by Schrodinger 2018-1, maestro v11.5. The antimicrobial results indicated that compounds 3, 8, 11 and 12 displayed the significant antimicrobial activity and comparable to the standards drugs (ciprofloxacin and fluconazole). The anticancer activity results indicated that compound 5 have good anticancer activity among the synthesized compounds but lower active than the standard drugs (5-fluorouracil and tomudex). Molecular docking study demonstrated that compounds 5 and 7 displayed the good docking score with better anticancer potency within the binding pocket and these compounds may be used as a lead for rational drug designing for the anticancer molecules. [Image: see text] |
---|