Cargando…
Analyzing Learned Molecular Representations for Property Prediction
[Image: see text] Advancements in neural machinery have led to a wide range of algorithmic solutions for molecular property prediction. Two classes of models in particular have yielded promising results: neural networks applied to computed molecular fingerprints or expert-crafted descriptors and gra...
Autores principales: | Yang, Kevin, Swanson, Kyle, Jin, Wengong, Coley, Connor, Eiden, Philipp, Gao, Hua, Guzman-Perez, Angel, Hopper, Timothy, Kelley, Brian, Mathea, Miriam, Palmer, Andrew, Settels, Volker, Jaakkola, Tommi, Jensen, Klavs, Barzilay, Regina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727618/ https://www.ncbi.nlm.nih.gov/pubmed/31361484 http://dx.doi.org/10.1021/acs.jcim.9b00237 |
Ejemplares similares
-
Correction to Analyzing
Learned Molecular Representations
for Property Prediction
por: Yang, Kevin, et al.
Publicado: (2019) -
A graph-convolutional neural network model for the prediction of chemical reactivity
por: Coley, Connor W., et al.
Publicado: (2018) -
Prediction of Organic Reaction Outcomes Using Machine
Learning
por: Coley, Connor W., et al.
Publicado: (2017) -
Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning
por: Wang, Xiaoxue, et al.
Publicado: (2020) -
Deep learning identifies synergistic drug combinations for treating COVID-19
por: Jin, Wengong, et al.
Publicado: (2021)