Cargando…
Constricted migration modulates stem cell differentiation
Tissue regeneration at an injured site depends on proliferation, migration, and differentiation of resident stem or progenitor cells, but solid tissues are often sufficiently dense and constricting that nuclei are highly stressed by migration. In this study, constricted migration of myoblastic cell...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727770/ https://www.ncbi.nlm.nih.gov/pubmed/31188712 http://dx.doi.org/10.1091/mbc.E19-02-0090 |
_version_ | 1783449321717366784 |
---|---|
author | Smith, Lucas R. Irianto, Jerome Xia, Yuntao Pfeifer, Charlotte R. Discher, Dennis E. |
author_facet | Smith, Lucas R. Irianto, Jerome Xia, Yuntao Pfeifer, Charlotte R. Discher, Dennis E. |
author_sort | Smith, Lucas R. |
collection | PubMed |
description | Tissue regeneration at an injured site depends on proliferation, migration, and differentiation of resident stem or progenitor cells, but solid tissues are often sufficiently dense and constricting that nuclei are highly stressed by migration. In this study, constricted migration of myoblastic cell types and mesenchymal stem cells (MSCs) increases nuclear rupture, increases DNA damage, and modulates differentiation. Fewer myoblasts fuse into regenerating muscle in vivo after constricted migration in vitro, and myodifferentiation in vitro is likewise suppressed. Myosin II inhibition rescues rupture and DNA damage, implicating nuclear forces, while mitosis and the cell cycle are suppressed by constricted migration, consistent with a checkpoint. Although perturbed proliferation fails to explain defective differentiation, nuclear rupture mislocalizes differentiation-relevant MyoD and KU80 (a DNA repair factor), with nuclear entry of the DNA-binding factor cGAS. Human MSCs exhibit similar damage, but osteogenesis increases—which is relevant to bone and to calcified fibrotic tissues, including diseased muscle. Tissue repair can thus be modulated up or down by the curvature of pores through which stem cells squeeze. |
format | Online Article Text |
id | pubmed-6727770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-67277702019-10-07 Constricted migration modulates stem cell differentiation Smith, Lucas R. Irianto, Jerome Xia, Yuntao Pfeifer, Charlotte R. Discher, Dennis E. Mol Biol Cell Articles Tissue regeneration at an injured site depends on proliferation, migration, and differentiation of resident stem or progenitor cells, but solid tissues are often sufficiently dense and constricting that nuclei are highly stressed by migration. In this study, constricted migration of myoblastic cell types and mesenchymal stem cells (MSCs) increases nuclear rupture, increases DNA damage, and modulates differentiation. Fewer myoblasts fuse into regenerating muscle in vivo after constricted migration in vitro, and myodifferentiation in vitro is likewise suppressed. Myosin II inhibition rescues rupture and DNA damage, implicating nuclear forces, while mitosis and the cell cycle are suppressed by constricted migration, consistent with a checkpoint. Although perturbed proliferation fails to explain defective differentiation, nuclear rupture mislocalizes differentiation-relevant MyoD and KU80 (a DNA repair factor), with nuclear entry of the DNA-binding factor cGAS. Human MSCs exhibit similar damage, but osteogenesis increases—which is relevant to bone and to calcified fibrotic tissues, including diseased muscle. Tissue repair can thus be modulated up or down by the curvature of pores through which stem cells squeeze. The American Society for Cell Biology 2019-07-22 /pmc/articles/PMC6727770/ /pubmed/31188712 http://dx.doi.org/10.1091/mbc.E19-02-0090 Text en © 2019 Smith et al. “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. http://creativecommons.org/licenses/by-nc-sa/3.0 This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License. |
spellingShingle | Articles Smith, Lucas R. Irianto, Jerome Xia, Yuntao Pfeifer, Charlotte R. Discher, Dennis E. Constricted migration modulates stem cell differentiation |
title | Constricted migration modulates stem cell differentiation |
title_full | Constricted migration modulates stem cell differentiation |
title_fullStr | Constricted migration modulates stem cell differentiation |
title_full_unstemmed | Constricted migration modulates stem cell differentiation |
title_short | Constricted migration modulates stem cell differentiation |
title_sort | constricted migration modulates stem cell differentiation |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727770/ https://www.ncbi.nlm.nih.gov/pubmed/31188712 http://dx.doi.org/10.1091/mbc.E19-02-0090 |
work_keys_str_mv | AT smithlucasr constrictedmigrationmodulatesstemcelldifferentiation AT iriantojerome constrictedmigrationmodulatesstemcelldifferentiation AT xiayuntao constrictedmigrationmodulatesstemcelldifferentiation AT pfeifercharlotter constrictedmigrationmodulatesstemcelldifferentiation AT discherdennise constrictedmigrationmodulatesstemcelldifferentiation |