Cargando…

The role of the exocyst in renal ciliogenesis, cystogenesis, tubulogenesis, and development

The exocyst is a highly conserved eight-subunit protein complex (EXOC1–8) involved in the targeting and docking of exocytic vesicles translocating from the trans-Golgi network to various sites in renal cells. EXOC5 is a central exocyst component because it connects EXOC6, bound to the vesicles exiti...

Descripción completa

Detalles Bibliográficos
Autor principal: Lipschutz, Joshua H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Nephrology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727897/
https://www.ncbi.nlm.nih.gov/pubmed/31284362
http://dx.doi.org/10.23876/j.krcp.19.050
Descripción
Sumario:The exocyst is a highly conserved eight-subunit protein complex (EXOC1–8) involved in the targeting and docking of exocytic vesicles translocating from the trans-Golgi network to various sites in renal cells. EXOC5 is a central exocyst component because it connects EXOC6, bound to the vesicles exiting the trans-Golgi network via the small GTPase RAB8, to the rest of the exocyst complex at the plasma membrane. In the kidney, the exocyst complex is involved in primary ciliognesis, cystogenesis, and tubulogenesis. The exocyst, and its regulators, have also been found in urinary extracellular vesicles, and may be centrally involved in urocrine signaling and repair following acute kidney injury. The exocyst is centrally involved in the development of other organs, including the eye, ear, and heart. The exocyst is regulated by many different small GTPases of the RHO, RAL, RAB, and ARF families. The small GTPases, and their guanine nucleotide exchange factors and GTPase-activating proteins, likely give the exocyst specificity of function. The recent development of a floxed Exoc5 mouse line will aid researchers in studying the role of the exocyst in multiple cells and organ types by allowing for tissue-specific knockout, in conjunction with Cre-driver mouse lines.