Cargando…
Transient Charge and Energy Flow in the Wide-Band Limit
[Image: see text] The wide-band limit is a commonly used approximation to analyze transport through nanoscale devices. In this work we investigate its applicability to the study of charge and heat transport through molecular break junctions exposed to voltage biases and temperature gradients. We fin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728063/ https://www.ncbi.nlm.nih.gov/pubmed/29660278 http://dx.doi.org/10.1021/acs.jctc.8b00077 |
Sumario: | [Image: see text] The wide-band limit is a commonly used approximation to analyze transport through nanoscale devices. In this work we investigate its applicability to the study of charge and heat transport through molecular break junctions exposed to voltage biases and temperature gradients. We find by comparative simulations that while the wide-band-limit approximation faithfully describes the long-time charge and heat transport, it fails to characterize the short-time behavior of the junction. In particular, we show that the charge current flowing through the device shows a discontinuity when a temperature gradient is applied, while the energy flow is discontinuous when a voltage bias is switched on and even diverges when the junction is exposed to both a temperature gradient and a voltage bias. We provide an explanation for this pathological behavior and propose two possible solutions to this problem. |
---|