Cargando…
Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach
Deep learning approaches have achieved state-of-the-art performance in cardiac magnetic resonance (CMR) image segmentation. However, most approaches have focused on learning image intensity features for segmentation, whereas the incorporation of anatomical shape priors has received less attention. I...
Autores principales: | Duan, Jinming, Bello, Ghalib, Schlemper, Jo, Bai, Wenjia, Dawes, Timothy J W, Biffi, Carlo, de Marvao, Antonio, Doumou, Georgia, O’Regan, Declan P, Rueckert, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728160/ https://www.ncbi.nlm.nih.gov/pubmed/30676949 http://dx.doi.org/10.1109/TMI.2019.2894322 |
Ejemplares similares
-
Deep learning cardiac motion analysis for human survival prediction
por: Bello, Ghalib A., et al.
Publicado: (2019) -
Genome wide association analysis of the heart using high-resolution 3D cardiac MRI identifies new genetic loci underlying cardiac structure and function
por: Marvao, Antonio de, et al.
Publicado: (2016) -
Adverse changes in left ventricular structure begin at normotensive systolic blood pressures: a high resolution MRI study
por: de Marvao, Antonio, et al.
Publicado: (2015) -
Relationship between body composition and left ventricular geometry using three dimensional cardiovascular magnetic resonance
por: Corden, Ben, et al.
Publicado: (2016) -
Three-dimensional cardiovascular imaging-genetics: a mass univariate framework
por: Biffi, Carlo, et al.
Publicado: (2018)