Cargando…
A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond
We present a joint model based on deep learning that is designed to inpaint the missing-wedge sinogram of electron tomography and reduce the residual artifacts in the reconstructed tomograms. Traditional methods, such as weighted back projection (WBP) and simultaneous algebraic reconstruction techni...
Autores principales: | Ding, Guanglei, Liu, Yitong, Zhang, Rui, Xin, Huolin L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728317/ https://www.ncbi.nlm.nih.gov/pubmed/31488874 http://dx.doi.org/10.1038/s41598-019-49267-x |
Ejemplares similares
-
Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction
por: Peng, Chengtao, et al.
Publicado: (2017) -
Completion of Metal-Damaged Traces Based on Deep Learning in Sinogram Domain for Metal Artifacts Reduction in CT Images
por: Zhu, Linlin, et al.
Publicado: (2021) -
Metal Artifact Reduction in Dental Computed Tomography Images Based on Sinogram Segmentation Using Curvelet Transform Followed by Hough Transform
por: Yazdi, Mehran, et al.
Publicado: (2017) -
PET reconstruction artifact can be minimized by using sinogram correction and filtered back-projection technique
por: Jha, Ashish Kumar, et al.
Publicado: (2014) -
A sinogram denoising algorithm for low-dose computed tomography
por: Karimi, Davood, et al.
Publicado: (2016)