Cargando…
Reduction of false alarms in the intensive care unit using an optimized machine learning based approach
This work attempts to reduce the number of false alarms generated by bedside monitors in the intensive care unit (ICU), as a majority of current alarms are false. In this study, we applied methods that can be categorized into three stages: signal processing, feature extraction, and optimized machine...
Autores principales: | Au-Yeung, Wan-Tai M., Sahani, Ashish K., Isselbacher, Eric M., Armoundas, Antonis A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728371/ https://www.ncbi.nlm.nih.gov/pubmed/31508497 http://dx.doi.org/10.1038/s41746-019-0160-7 |
Ejemplares similares
-
Real-time machine learning-based intensive care unit alarm classification without prior knowledge of the underlying rhythm
por: Au-Yeung, Wan-Tai M, et al.
Publicado: (2021) -
State‐of‐the‐Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System
por: Sevakula, Rahul Kumar, et al.
Publicado: (2020) -
Alarms in the intensive care unit: how can the number of false alarms be reduced?
por: Chambrin, Marie-Christine
Publicado: (2001) -
Quality improvement initiative for reduction of false alarms from multiparameter monitors in neonatal intensive care unit
por: Sahoo, Tanushree, et al.
Publicado: (2019) -
An Optimized Machine Learning Model Accurately Predicts In-Hospital Outcomes at Admission to a Cardiac Unit
por: Bollepalli, Sandeep Chandra, et al.
Publicado: (2022)