Cargando…
Predict Epitranscriptome Targets and Regulatory Functions of N(6)-Methyladenosine (m(6)A) Writers and Erasers
Currently, although many successful bioinformatics efforts have been reported in the epitranscriptomics field for N(6)-methyladenosine (m(6)A) site identification, none is focused on the substrate specificity of different m(6)A-related enzymes, ie, the methyltransferases (writers) and demethylases (...
Autores principales: | Song, Yiyou, Xu, Qingru, Wei, Zhen, Zhen, Di, Su, Jionglong, Chen, Kunqi, Meng, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728658/ https://www.ncbi.nlm.nih.gov/pubmed/31523126 http://dx.doi.org/10.1177/1176934319871290 |
Ejemplares similares
-
Prediction of RNA Methylation Status From Gene Expression Data Using
Classification and Regression Methods
por: Xue, Hao, et al.
Publicado: (2020) -
m(6)A-Atlas: a comprehensive knowledgebase for unraveling the N(6)-methyladenosine (m(6)A) epitranscriptome
por: Tang, Yujiao, et al.
Publicado: (2020) -
Predicting Self-Interacting Proteins Using a Recurrent Neural Network
and Protein Evolutionary Information
por: An, Ji-Yong, et al.
Publicado: (2020) -
An Efficient Feature Extraction Technique Based on Local Coding PSSM
and Multifeatures Fusion for Predicting Protein-Protein
Interactions
por: An, Ji-Yong, et al.
Publicado: (2019) -
Deep belief network–Based Matrix Factorization Model for MicroRNA-Disease Associations Prediction
por: Ding, Yulian, et al.
Publicado: (2020)