Cargando…
PTPD: predicting therapeutic peptides by deep learning and word2vec
*: Background In the search for therapeutic peptides for disease treatments, many efforts have been made to identify various functional peptides from large numbers of peptide sequence databases. In this paper, we propose an effective computational model that uses deep learning and word2vec to predic...
Autores principales: | Wu, Chuanyan, Gao, Rui, Zhang, Yusen, De Marinis, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728961/ https://www.ncbi.nlm.nih.gov/pubmed/31492094 http://dx.doi.org/10.1186/s12859-019-3006-z |
Ejemplares similares
-
SimVec: predicting polypharmacy side effects for new drugs
por: Lukashina, Nina, et al.
Publicado: (2022) -
A novel model for protein sequence similarity analysis based on spectral radius
por: Wu, Chuanyan, et al.
Publicado: (2018) -
The Spectral Underpinning of word2vec
por: Jaffe, Ariel, et al.
Publicado: (2020) -
edge2vec: Representation learning using edge semantics for biomedical knowledge discovery
por: Gao, Zheng, et al.
Publicado: (2019) -
Specialists, Scientists, and Sentiments: Word2Vec and Doc2Vec in Analysis of Scientific and Medical Texts
por: Chen, Qufei, et al.
Publicado: (2021)