Cargando…
Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms
Recently it has been shown that building networks from time series allows to study complex systems to characterize them when they go through a phase transition. This give us the opportunity to study this systems from a entire new point of view. In the present work we have used the natural and horizo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730881/ https://www.ncbi.nlm.nih.gov/pubmed/31490949 http://dx.doi.org/10.1371/journal.pone.0221674 |
_version_ | 1783449595572912128 |
---|---|
author | Gómez-Hernández, Daniel García-Gudiño, David Landa, Emmanuel Morales, Irving O. Frank, Alejandro |
author_facet | Gómez-Hernández, Daniel García-Gudiño, David Landa, Emmanuel Morales, Irving O. Frank, Alejandro |
author_sort | Gómez-Hernández, Daniel |
collection | PubMed |
description | Recently it has been shown that building networks from time series allows to study complex systems to characterize them when they go through a phase transition. This give us the opportunity to study this systems from a entire new point of view. In the present work we have used the natural and horizontal visualization algorithms to built networks of two popular models, which present phase transitions: the Ising model and the Kuramoto model. By measuring some topological quantities as the average degree, or the clustering coefficient, it was found that the networks retain the capability of detecting the phase transition of the system. From our results it is possible to establish that both visibility algorithms are capable of detecting the critical control parameter, as in every quantity analyzed (the average degree, the average path and the clustering coefficient) there is a minimum or a maximum value. In the case of the natural visualization algorithm, the average path results are much more noisy than in the other quantities in the study. Specially for the Kuramoto Model, which in this case does not allow a detection of the critical point at plain sight as for the other quantities. The horizontal visualization algorithm has proven to be more explicit in every quantity, as every one of them show a clear change of behavior before and after the critical point of the transition. |
format | Online Article Text |
id | pubmed-6730881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-67308812019-09-16 Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms Gómez-Hernández, Daniel García-Gudiño, David Landa, Emmanuel Morales, Irving O. Frank, Alejandro PLoS One Research Article Recently it has been shown that building networks from time series allows to study complex systems to characterize them when they go through a phase transition. This give us the opportunity to study this systems from a entire new point of view. In the present work we have used the natural and horizontal visualization algorithms to built networks of two popular models, which present phase transitions: the Ising model and the Kuramoto model. By measuring some topological quantities as the average degree, or the clustering coefficient, it was found that the networks retain the capability of detecting the phase transition of the system. From our results it is possible to establish that both visibility algorithms are capable of detecting the critical control parameter, as in every quantity analyzed (the average degree, the average path and the clustering coefficient) there is a minimum or a maximum value. In the case of the natural visualization algorithm, the average path results are much more noisy than in the other quantities in the study. Specially for the Kuramoto Model, which in this case does not allow a detection of the critical point at plain sight as for the other quantities. The horizontal visualization algorithm has proven to be more explicit in every quantity, as every one of them show a clear change of behavior before and after the critical point of the transition. Public Library of Science 2019-09-06 /pmc/articles/PMC6730881/ /pubmed/31490949 http://dx.doi.org/10.1371/journal.pone.0221674 Text en © 2019 Gómez-Hernández et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Gómez-Hernández, Daniel García-Gudiño, David Landa, Emmanuel Morales, Irving O. Frank, Alejandro Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms |
title | Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms |
title_full | Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms |
title_fullStr | Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms |
title_full_unstemmed | Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms |
title_short | Analysis of properties of Ising and Kuramoto models that are preserved in networks constructed by visualization algorithms |
title_sort | analysis of properties of ising and kuramoto models that are preserved in networks constructed by visualization algorithms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730881/ https://www.ncbi.nlm.nih.gov/pubmed/31490949 http://dx.doi.org/10.1371/journal.pone.0221674 |
work_keys_str_mv | AT gomezhernandezdaniel analysisofpropertiesofisingandkuramotomodelsthatarepreservedinnetworksconstructedbyvisualizationalgorithms AT garciagudinodavid analysisofpropertiesofisingandkuramotomodelsthatarepreservedinnetworksconstructedbyvisualizationalgorithms AT landaemmanuel analysisofpropertiesofisingandkuramotomodelsthatarepreservedinnetworksconstructedbyvisualizationalgorithms AT moralesirvingo analysisofpropertiesofisingandkuramotomodelsthatarepreservedinnetworksconstructedbyvisualizationalgorithms AT frankalejandro analysisofpropertiesofisingandkuramotomodelsthatarepreservedinnetworksconstructedbyvisualizationalgorithms |