Cargando…
World’s fastest brain-computer interface: Combining EEG2Code with deep learning
We present a novel approach based on deep learning for decoding sensory information from non-invasively recorded Electroencephalograms (EEG). It can either be used in a passive Brain-Computer Interface (BCI) to predict properties of a visual stimulus the person is viewing, or it can be used to activ...
Autores principales: | Nagel, Sebastian, Spüler, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730910/ https://www.ncbi.nlm.nih.gov/pubmed/31490999 http://dx.doi.org/10.1371/journal.pone.0221909 |
Ejemplares similares
-
A high-speed brain-computer interface (BCI) using dry EEG electrodes
por: Spüler, Martin
Publicado: (2017) -
Modelling the brain response to arbitrary visual stimulation patterns for a flexible high-speed Brain-Computer Interface
por: Nagel, Sebastian, et al.
Publicado: (2018) -
The world's fastest camera
por: Piquepaille, Roland
Publicado: (2006) -
Status of deep learning for EEG-based brain–computer interface applications
por: Hossain, Khondoker Murad, et al.
Publicado: (2023) -
On the Deep Learning Models for EEG-Based Brain-Computer Interface Using Motor Imagery
por: Zhu, Hao, et al.
Publicado: (2022)