Cargando…
Identification and characterization of a hyperthermophilic GH9 cellulase from the Arctic Mid-Ocean Ridge vent field
A novel GH9 cellulase (AMOR_GH9A) was discovered by sequence-based mining of a unique metagenomic dataset collected at the Jan Mayen hydrothermal vent field. AMOR_GH9A comprises a signal peptide, a catalytic domain and a CBM3 cellulose-binding module. AMOR_GH9A is an exceptionally stable enzyme with...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731012/ https://www.ncbi.nlm.nih.gov/pubmed/31491027 http://dx.doi.org/10.1371/journal.pone.0222216 |
Sumario: | A novel GH9 cellulase (AMOR_GH9A) was discovered by sequence-based mining of a unique metagenomic dataset collected at the Jan Mayen hydrothermal vent field. AMOR_GH9A comprises a signal peptide, a catalytic domain and a CBM3 cellulose-binding module. AMOR_GH9A is an exceptionally stable enzyme with a temperature optimum around 100°C and an apparent melting temperature of 105°C. The novel cellulase retains 64% of its activity after 4 hours of incubation at 95°C. The closest characterized homolog of AMOR_GH9A is TfCel9A, a processive endocellulase from the model thermophilic bacterium Thermobifida fusca (64.2% sequence identity). Direct comparison of AMOR_GH9A and TfCel9A revealed that AMOR_GH9A possesses higher activity on soluble and amorphous substrates (phosphoric acid swollen cellulose, konjac glucomannan) and has an ability to hydrolyse xylan that is lacking in TfCel9A. |
---|