Cargando…
Oedometer based estimation of vertical shrinkage of expansive soil in a large instrumeted soil column
The moisture variations in expansive soils cause shrink-swell behaviour, resulting in distress to the structures founded in/on problematic soils. The oedometer based tests can be used to determine swell behaviour of soil; however, limited research has been conducted for vertical shrinkage estimation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731208/ https://www.ncbi.nlm.nih.gov/pubmed/31517116 http://dx.doi.org/10.1016/j.heliyon.2019.e02380 |
Sumario: | The moisture variations in expansive soils cause shrink-swell behaviour, resulting in distress to the structures founded in/on problematic soils. The oedometer based tests can be used to determine swell behaviour of soil; however, limited research has been conducted for vertical shrinkage estimations. In this study, a series of conventional oedometer tests were conducted to investigate the vertical shrinkage of grey Vertosol due to soil moisture variations under different surcharges. A statistically strong relationship (R(2) = 0.99) was observed for shrinkage per unit change in volumetric water content under shallow overburden pressures (surcharges). The validation of the shrinkage was conducted by simulating field conditions under induced drying cycle. Derived shrinkage prediction equation and Aitchison's method showed underestimations of 10.1% and 44.0% of the actual shrinkage respectively. Briaud's and Dhowian's models overestimated the value by 59.0% and 44.5% respectively. This study emphasizes the applicability of the conventional oedometer based shrinkage test for a reasonable estimation of vertical shrinkage for a given expansive soil. Thereby, proposing a simple and practical approach to obtain shrinkage characteristics for geotechnical engineering applications. |
---|