Cargando…

Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial

OBJECTIVE: Growth hormone (GH) stimulates lipolysis, but the underlying mechanisms remain incompletely understood. We examined the effect of GH on the expression of lipolytic regulators in adipose tissue (AT). METHODS: In a randomized, placebo-controlled, cross-over study, nine men were examined aft...

Descripción completa

Detalles Bibliográficos
Autores principales: Hjelholt, Astrid Johannesson, Lee, Kevin Y., Arlien-Søborg, Mai Christiansen, Pedersen, Steen Bønløkke, Kopchick, John J., Puri, Vishwajeet, Jessen, Niels, Jørgensen, Jens Otto L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731350/
https://www.ncbi.nlm.nih.gov/pubmed/31668393
http://dx.doi.org/10.1016/j.molmet.2019.08.013
_version_ 1783449674305241088
author Hjelholt, Astrid Johannesson
Lee, Kevin Y.
Arlien-Søborg, Mai Christiansen
Pedersen, Steen Bønløkke
Kopchick, John J.
Puri, Vishwajeet
Jessen, Niels
Jørgensen, Jens Otto L.
author_facet Hjelholt, Astrid Johannesson
Lee, Kevin Y.
Arlien-Søborg, Mai Christiansen
Pedersen, Steen Bønløkke
Kopchick, John J.
Puri, Vishwajeet
Jessen, Niels
Jørgensen, Jens Otto L.
author_sort Hjelholt, Astrid Johannesson
collection PubMed
description OBJECTIVE: Growth hormone (GH) stimulates lipolysis, but the underlying mechanisms remain incompletely understood. We examined the effect of GH on the expression of lipolytic regulators in adipose tissue (AT). METHODS: In a randomized, placebo-controlled, cross-over study, nine men were examined after injection of 1) a GH bolus and 2) a GH-receptor antagonist (pegvisomant) followed by four AT biopsies. In a second study, eight men were examined in a 2 × 2 factorial design including GH infusion and 36-h fasting with AT biopsies obtained during a basal period and a hyperinsulinemic-euglycemic clamp. Expression of GH-signaling intermediates and lipolytic regulators were studied by PCR and western blotting. In addition, mechanistic experiments in mouse models and 3T3-L1 adipocytes were performed. RESULTS: The GH bolus increased circulating free fatty acids (p < 0.0001) together with phosphorylation of signal transducer and activator of transcription 5 (STAT5) (p < 0.0001) and mRNA expression of the STAT5-dependent genes cytokine-inducible SH2-containing protein (CISH) and IGF-1 in AT. This was accompanied by suppressed mRNA expression of G0/G1 switch gene 2 (G0S2) (p = 0.007) and fat specific protein 27 (FSP27) (p = 0.002) and upregulation of phosphatase and tensin homolog (PTEN) mRNA expression (p = 0.03). Suppression of G0S2 was also observed in humans after GH infusion and fasting, as well as in GH transgene mice, and in vitro studies suggested MEK-PPARγ signaling to be involved. CONCLUSIONS: GH-induced lipolysis in human subjects in vivo is linked to downregulation of G0S2 and FSP27 and upregulation of PTEN in AT. Mechanistically, in vitro data suggest that GH acts via MEK to suppress PPARγ-dependent transcription of G0S2. ClinicalTrials.govNCT02782221 and NCT01209429.
format Online
Article
Text
id pubmed-6731350
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-67313502019-09-12 Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial Hjelholt, Astrid Johannesson Lee, Kevin Y. Arlien-Søborg, Mai Christiansen Pedersen, Steen Bønløkke Kopchick, John J. Puri, Vishwajeet Jessen, Niels Jørgensen, Jens Otto L. Mol Metab Original Article OBJECTIVE: Growth hormone (GH) stimulates lipolysis, but the underlying mechanisms remain incompletely understood. We examined the effect of GH on the expression of lipolytic regulators in adipose tissue (AT). METHODS: In a randomized, placebo-controlled, cross-over study, nine men were examined after injection of 1) a GH bolus and 2) a GH-receptor antagonist (pegvisomant) followed by four AT biopsies. In a second study, eight men were examined in a 2 × 2 factorial design including GH infusion and 36-h fasting with AT biopsies obtained during a basal period and a hyperinsulinemic-euglycemic clamp. Expression of GH-signaling intermediates and lipolytic regulators were studied by PCR and western blotting. In addition, mechanistic experiments in mouse models and 3T3-L1 adipocytes were performed. RESULTS: The GH bolus increased circulating free fatty acids (p < 0.0001) together with phosphorylation of signal transducer and activator of transcription 5 (STAT5) (p < 0.0001) and mRNA expression of the STAT5-dependent genes cytokine-inducible SH2-containing protein (CISH) and IGF-1 in AT. This was accompanied by suppressed mRNA expression of G0/G1 switch gene 2 (G0S2) (p = 0.007) and fat specific protein 27 (FSP27) (p = 0.002) and upregulation of phosphatase and tensin homolog (PTEN) mRNA expression (p = 0.03). Suppression of G0S2 was also observed in humans after GH infusion and fasting, as well as in GH transgene mice, and in vitro studies suggested MEK-PPARγ signaling to be involved. CONCLUSIONS: GH-induced lipolysis in human subjects in vivo is linked to downregulation of G0S2 and FSP27 and upregulation of PTEN in AT. Mechanistically, in vitro data suggest that GH acts via MEK to suppress PPARγ-dependent transcription of G0S2. ClinicalTrials.govNCT02782221 and NCT01209429. Elsevier 2019-08-20 /pmc/articles/PMC6731350/ /pubmed/31668393 http://dx.doi.org/10.1016/j.molmet.2019.08.013 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Hjelholt, Astrid Johannesson
Lee, Kevin Y.
Arlien-Søborg, Mai Christiansen
Pedersen, Steen Bønløkke
Kopchick, John J.
Puri, Vishwajeet
Jessen, Niels
Jørgensen, Jens Otto L.
Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial
title Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial
title_full Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial
title_fullStr Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial
title_full_unstemmed Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial
title_short Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial
title_sort temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: a randomized controlled crossover trial
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731350/
https://www.ncbi.nlm.nih.gov/pubmed/31668393
http://dx.doi.org/10.1016/j.molmet.2019.08.013
work_keys_str_mv AT hjelholtastridjohannesson temporalpatternsoflipolyticregulatorsinadiposetissueafteracutegrowthhormoneexposureinhumansubjectsarandomizedcontrolledcrossovertrial
AT leekeviny temporalpatternsoflipolyticregulatorsinadiposetissueafteracutegrowthhormoneexposureinhumansubjectsarandomizedcontrolledcrossovertrial
AT arliensøborgmaichristiansen temporalpatternsoflipolyticregulatorsinadiposetissueafteracutegrowthhormoneexposureinhumansubjectsarandomizedcontrolledcrossovertrial
AT pedersensteenbønløkke temporalpatternsoflipolyticregulatorsinadiposetissueafteracutegrowthhormoneexposureinhumansubjectsarandomizedcontrolledcrossovertrial
AT kopchickjohnj temporalpatternsoflipolyticregulatorsinadiposetissueafteracutegrowthhormoneexposureinhumansubjectsarandomizedcontrolledcrossovertrial
AT purivishwajeet temporalpatternsoflipolyticregulatorsinadiposetissueafteracutegrowthhormoneexposureinhumansubjectsarandomizedcontrolledcrossovertrial
AT jessenniels temporalpatternsoflipolyticregulatorsinadiposetissueafteracutegrowthhormoneexposureinhumansubjectsarandomizedcontrolledcrossovertrial
AT jørgensenjensottol temporalpatternsoflipolyticregulatorsinadiposetissueafteracutegrowthhormoneexposureinhumansubjectsarandomizedcontrolledcrossovertrial