Cargando…
Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography
BACKGROUND: Biomechanical changes in articular cartilage are associated with the onset of osteoarthritis. We developed an optical coherence tomography-based strain rate tomography method: stress relaxation optical coherence straingraphy (SR-OCSA). The purpose of this study was to establish an approa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731561/ https://www.ncbi.nlm.nih.gov/pubmed/31492126 http://dx.doi.org/10.1186/s12891-019-2789-4 |
_version_ | 1783449693244620800 |
---|---|
author | Nakamura, Suguru Ikebuchi, Mitsuhiko Saeki, Souichi Furukawa, Daisuke Orita, Kumi Niimi, Nobuo Tsukahara, Yoshito Nakamura, Hiroaki |
author_facet | Nakamura, Suguru Ikebuchi, Mitsuhiko Saeki, Souichi Furukawa, Daisuke Orita, Kumi Niimi, Nobuo Tsukahara, Yoshito Nakamura, Hiroaki |
author_sort | Nakamura, Suguru |
collection | PubMed |
description | BACKGROUND: Biomechanical changes in articular cartilage are associated with the onset of osteoarthritis. We developed an optical coherence tomography-based strain rate tomography method: stress relaxation optical coherence straingraphy (SR-OCSA). The purpose of this study was to establish an approach for measuring mechanical properties of articular cartilage using SR-OCSA, and to investigate the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. METHODS: Anterior cruciate ligament transection surgery was performed on the left knees of 8–9-month-old New Zealand white rabbits. SR-OCSA was used to visualize and measure the viscoelastic properties of articular cartilage via attenuation coefficient of strain rate (ACSR). Using the same conditions as in the SR-OCSA test, an indentation test was conducted, and relaxation time was measured to evaluate the relationship between ACSR and relaxation time. RESULTS: SR-OCSA could nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. SR-OCSA captured significant increases in ACSR in cartilage at 2 weeks after surgery, when a histologically slight osteoarthritis sign was present. As cartilage degeneration progressed, ACSR increased, whereas relaxation time decreased in a time-dependent manner. Moreover, ACSR negatively correlated with relaxation time. In particular, ACSR was elevated around the tidemark and the elevation tended to move as cartilage degeneration progressed. CONCLUSIONS: SR-OCSA could tomographically and nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. The mechanical properties around the tidemark were degraded as cartilage degeneration progressed. Thus, SR-OCSA provides important data needed to understand the biomechanics of early osteoarthritis. |
format | Online Article Text |
id | pubmed-6731561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-67315612019-09-12 Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography Nakamura, Suguru Ikebuchi, Mitsuhiko Saeki, Souichi Furukawa, Daisuke Orita, Kumi Niimi, Nobuo Tsukahara, Yoshito Nakamura, Hiroaki BMC Musculoskelet Disord Research Article BACKGROUND: Biomechanical changes in articular cartilage are associated with the onset of osteoarthritis. We developed an optical coherence tomography-based strain rate tomography method: stress relaxation optical coherence straingraphy (SR-OCSA). The purpose of this study was to establish an approach for measuring mechanical properties of articular cartilage using SR-OCSA, and to investigate the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. METHODS: Anterior cruciate ligament transection surgery was performed on the left knees of 8–9-month-old New Zealand white rabbits. SR-OCSA was used to visualize and measure the viscoelastic properties of articular cartilage via attenuation coefficient of strain rate (ACSR). Using the same conditions as in the SR-OCSA test, an indentation test was conducted, and relaxation time was measured to evaluate the relationship between ACSR and relaxation time. RESULTS: SR-OCSA could nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. SR-OCSA captured significant increases in ACSR in cartilage at 2 weeks after surgery, when a histologically slight osteoarthritis sign was present. As cartilage degeneration progressed, ACSR increased, whereas relaxation time decreased in a time-dependent manner. Moreover, ACSR negatively correlated with relaxation time. In particular, ACSR was elevated around the tidemark and the elevation tended to move as cartilage degeneration progressed. CONCLUSIONS: SR-OCSA could tomographically and nondestructively detect and visualize changes in the distribution of viscoelastic properties of articular cartilage in early osteoarthritis. The mechanical properties around the tidemark were degraded as cartilage degeneration progressed. Thus, SR-OCSA provides important data needed to understand the biomechanics of early osteoarthritis. BioMed Central 2019-09-06 /pmc/articles/PMC6731561/ /pubmed/31492126 http://dx.doi.org/10.1186/s12891-019-2789-4 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Nakamura, Suguru Ikebuchi, Mitsuhiko Saeki, Souichi Furukawa, Daisuke Orita, Kumi Niimi, Nobuo Tsukahara, Yoshito Nakamura, Hiroaki Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography |
title | Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography |
title_full | Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography |
title_fullStr | Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography |
title_full_unstemmed | Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography |
title_short | Changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography |
title_sort | changes in viscoelastic properties of articular cartilage in early stage of osteoarthritis, as determined by optical coherence tomography-based strain rate tomography |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731561/ https://www.ncbi.nlm.nih.gov/pubmed/31492126 http://dx.doi.org/10.1186/s12891-019-2789-4 |
work_keys_str_mv | AT nakamurasuguru changesinviscoelasticpropertiesofarticularcartilageinearlystageofosteoarthritisasdeterminedbyopticalcoherencetomographybasedstrainratetomography AT ikebuchimitsuhiko changesinviscoelasticpropertiesofarticularcartilageinearlystageofosteoarthritisasdeterminedbyopticalcoherencetomographybasedstrainratetomography AT saekisouichi changesinviscoelasticpropertiesofarticularcartilageinearlystageofosteoarthritisasdeterminedbyopticalcoherencetomographybasedstrainratetomography AT furukawadaisuke changesinviscoelasticpropertiesofarticularcartilageinearlystageofosteoarthritisasdeterminedbyopticalcoherencetomographybasedstrainratetomography AT oritakumi changesinviscoelasticpropertiesofarticularcartilageinearlystageofosteoarthritisasdeterminedbyopticalcoherencetomographybasedstrainratetomography AT niiminobuo changesinviscoelasticpropertiesofarticularcartilageinearlystageofosteoarthritisasdeterminedbyopticalcoherencetomographybasedstrainratetomography AT tsukaharayoshito changesinviscoelasticpropertiesofarticularcartilageinearlystageofosteoarthritisasdeterminedbyopticalcoherencetomographybasedstrainratetomography AT nakamurahiroaki changesinviscoelasticpropertiesofarticularcartilageinearlystageofosteoarthritisasdeterminedbyopticalcoherencetomographybasedstrainratetomography |