Cargando…
Multiple-level biomedical event trigger recognition with transfer learning
BACKGROUND: Automatic extraction of biomedical events from literature is an important task in the understanding biological systems, allowing for faster update of the latest discoveries automatically. Detecting trigger words which indicate events is a critical step in the process of event extraction,...
Autor principal: | Chen, Yifei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731566/ https://www.ncbi.nlm.nih.gov/pubmed/31492112 http://dx.doi.org/10.1186/s12859-019-3030-z |
Ejemplares similares
-
A transfer learning model with multi-source domains for biomedical event trigger extraction
por: Chen, Yifei
Publicado: (2021) -
Hierarchical shared transfer learning for biomedical named entity recognition
por: Chai, Zhaoying, et al.
Publicado: (2022) -
TrigNER: automatically optimized biomedical event trigger recognition on scientific documents
por: Campos, David, et al.
Publicado: (2014) -
Transfer learning for biomedical named entity recognition with neural networks
por: Giorgi, John M, et al.
Publicado: (2018) -
Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization
por: Rivera-Zavala, Renzo M., et al.
Publicado: (2021)