Cargando…

Nano-graphene oxide improved the antibacterial property of antisense yycG RNA on Staphylococcus aureus

BACKGROUND: Staphylococcus aureus (S. aureus) has the potential to opportunistically cause infectious diseases, including osteomyelitis, skin infections, pneumonia, and diarrhea. We previously reported that ASyycG RNA reduced the transcripts of virulent genes, and biofilm formation of S. aureus. Cur...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Shizhou, Liu, Yunjie, Zhang, Hui, Lei, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731568/
https://www.ncbi.nlm.nih.gov/pubmed/31492154
http://dx.doi.org/10.1186/s13018-019-1356-x
Descripción
Sumario:BACKGROUND: Staphylococcus aureus (S. aureus) has the potential to opportunistically cause infectious diseases, including osteomyelitis, skin infections, pneumonia, and diarrhea. We previously reported that ASyycG RNA reduced the transcripts of virulent genes, and biofilm formation of S. aureus. Currently, graphene oxide (GO) nanosheets are used to efficiently deliver nucleic acids with favorable biocompatibility. METHODS: In the current study, a GO-based recombinant pDL278 ASyycG vector transformation strategy was developed. The particle size distributions and zeta-potential of the GO-PEI-based ASyycG were evaluated. The ASyycG plasmids were labeled with gene-encoding enhanced green fluorescent protein (ASyycG-eGFP). Quantitative real-time PCR assays were performed to investigate the expression of yycF/G/H and icaADB genes. Biofilm biomass and bacterial viability of S. aureus were evaluated by scanning electron microscopy and confocal laser scanning microscopy. We found that the expression of the yycG gene was inversely correlated with levels of the ASyycG transcripts and that the GO-PEI-ASyycG strain had the lowest expression of biofilm organization-associated genes. RESULTS: The results showed that the GO-based strategy significantly increased ASyycG transformation as a delivery system compared to the conventional competence-stimulating peptide strategy. Furthermore, GO-PEI-ASyycG suppressed bacterial biofilm aggregation and improved bactericidal effects on S. aureus after 24 h biofilm establishment. CONCLUSIONS: Our findings demonstrated that nano-GO with antisense yycG RNA is a more effective and relatively stable strategy for the management of S. aureus infections. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13018-019-1356-x) contains supplementary material, which is available to authorized users.