Cargando…
A privacy-preserving distributed filtering framework for NLP artifacts
BACKGROUND: Medical data sharing is a big challenge in biomedicine, which often hinders collaborative research. Due to privacy concerns, clinical notes cannot be directly shared. A lot of efforts have been dedicated to de-identifying clinical notes but it is still very challenging to accurately loca...
Autores principales: | Sadat, Md Nazmus, Aziz, Md Momin Al, Mohammed, Noman, Pakhomov, Serguei, Liu, Hongfang, Jiang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731605/ https://www.ncbi.nlm.nih.gov/pubmed/31493797 http://dx.doi.org/10.1186/s12911-019-0867-z |
Ejemplares similares
-
PRESAGE: PRivacy-preserving gEnetic testing via SoftwAre Guard Extension
por: Chen, Feng, et al.
Publicado: (2017) -
Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation
por: Sadat, Md Nazmus, et al.
Publicado: (2018) -
Open Source Clinical NLP – More than Any Single System
por: Masanz, James, et al.
Publicado: (2014) -
A comprehensive tool for creating and evaluating privacy-preserving biomedical prediction models
por: Eicher, Johanna, et al.
Publicado: (2020) -
TOMOBFLOW: feature-preserving noise filtering for electron tomography
por: Fernandez, Jose-Jesus
Publicado: (2009)