Cargando…
Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol
BACKGROUND: The screening of digital footprint for clinical purposes relies on the capacity of wearable technologies to collect data and extract relevant information’s for patient management. Artificial intelligence (AI) techniques allow processing of real-time observational information and continuo...
Autores principales: | Berrouiguet, Sofian, Barrigón, María Luisa, Castroman, Jorge Lopez, Courtet, Philippe, Artés-Rodríguez, Antonio, Baca-García, Enrique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731613/ https://www.ncbi.nlm.nih.gov/pubmed/31493783 http://dx.doi.org/10.1186/s12888-019-2260-y |
Ejemplares similares
-
Smartphone-based Ecological Momentary Intervention for secondary prevention of suicidal thoughts and behaviour: protocol for the SmartCrisis V.2.0 randomised clinical trial
por: Barrigon, Maria Luisa, et al.
Publicado: (2022) -
Fundamentals for Future Mobile-Health (mHealth): A Systematic Review of Mobile Phone and Web-Based Text Messaging in Mental Health
por: Berrouiguet, Sofian, et al.
Publicado: (2016) -
An Approach for Data Mining of Electronic Health Record Data for Suicide Risk Management: Database Analysis for Clinical Decision Support
por: Berrouiguet, Sofian, et al.
Publicado: (2019) -
Psychiatric Profiles of eHealth Users Evaluated Using Data Mining Techniques: Cohort Study
por: Lopez-Castroman, Jorge, et al.
Publicado: (2021) -
One-Week Suicide Risk Prediction Using Real-Time Smartphone Monitoring: Prospective Cohort Study
por: Barrigon, Maria Luisa, et al.
Publicado: (2023)