Cargando…
Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph
To avoid predation, many species rely on vision to detect predators and initiate an escape response. The ability to detect predators may be lower in darker light conditions or with darker backgrounds. For birds, however, this has never been experimentally tested. We test the hypothesis that the resp...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731706/ https://www.ncbi.nlm.nih.gov/pubmed/31598248 http://dx.doi.org/10.1098/rsos.190677 |
_version_ | 1783449717709996032 |
---|---|
author | Nebel, Carina Sumasgutner, Petra Pajot, Adrien Amar, Arjun |
author_facet | Nebel, Carina Sumasgutner, Petra Pajot, Adrien Amar, Arjun |
author_sort | Nebel, Carina |
collection | PubMed |
description | To avoid predation, many species rely on vision to detect predators and initiate an escape response. The ability to detect predators may be lower in darker light conditions or with darker backgrounds. For birds, however, this has never been experimentally tested. We test the hypothesis that the response time of avian prey (feral pigeon Columbia livia f. domestica) to a simulated hawk attack (taxidermy mounted colour-polymorphic black sparrowhawk Accipiter melanoleucus) will differ depending on light levels or background colour. We predict that response will be slower under darker conditions, which would translate into higher predation risk. The speed of response of prey in relation to light level or background colour may also interact with the colour of the predator, and this idea underpins a key hypothesis proposed for the maintenance of different colour morphs in polymorphic raptors. We therefore test whether the speed of reaction is influenced by the morph of the hawk (dark/light) in combination with light conditions (dull/bright), or background colours (black/white). We predict slowest responses to morphs under conditions that less contrast with the plumage of the hawk (e.g. light morph under bright light or white background). In support of our first hypothesis, pigeons reacted slower under duller light and with a black background. However, we found no support for the second hypothesis, with response times observed between the hawk-morphs being irrespective of light levels or background colour. Our findings experimentally confirm that birds detect avian predators less efficiently under darker conditions. These conditions, for example, might occur during early mornings or in dense forests, which could lead to changes in anti-predator behaviours. However, our results provide no support that different morphs may be maintained in a population due to differential selective advantages linked to improved hunting efficiencies in different conditions due to crypsis. |
format | Online Article Text |
id | pubmed-6731706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-67317062019-10-09 Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph Nebel, Carina Sumasgutner, Petra Pajot, Adrien Amar, Arjun R Soc Open Sci Biology (Whole Organism) To avoid predation, many species rely on vision to detect predators and initiate an escape response. The ability to detect predators may be lower in darker light conditions or with darker backgrounds. For birds, however, this has never been experimentally tested. We test the hypothesis that the response time of avian prey (feral pigeon Columbia livia f. domestica) to a simulated hawk attack (taxidermy mounted colour-polymorphic black sparrowhawk Accipiter melanoleucus) will differ depending on light levels or background colour. We predict that response will be slower under darker conditions, which would translate into higher predation risk. The speed of response of prey in relation to light level or background colour may also interact with the colour of the predator, and this idea underpins a key hypothesis proposed for the maintenance of different colour morphs in polymorphic raptors. We therefore test whether the speed of reaction is influenced by the morph of the hawk (dark/light) in combination with light conditions (dull/bright), or background colours (black/white). We predict slowest responses to morphs under conditions that less contrast with the plumage of the hawk (e.g. light morph under bright light or white background). In support of our first hypothesis, pigeons reacted slower under duller light and with a black background. However, we found no support for the second hypothesis, with response times observed between the hawk-morphs being irrespective of light levels or background colour. Our findings experimentally confirm that birds detect avian predators less efficiently under darker conditions. These conditions, for example, might occur during early mornings or in dense forests, which could lead to changes in anti-predator behaviours. However, our results provide no support that different morphs may be maintained in a population due to differential selective advantages linked to improved hunting efficiencies in different conditions due to crypsis. The Royal Society 2019-08-07 /pmc/articles/PMC6731706/ /pubmed/31598248 http://dx.doi.org/10.1098/rsos.190677 Text en © 2019 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Biology (Whole Organism) Nebel, Carina Sumasgutner, Petra Pajot, Adrien Amar, Arjun Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph |
title | Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph |
title_full | Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph |
title_fullStr | Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph |
title_full_unstemmed | Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph |
title_short | Response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph |
title_sort | response time of an avian prey to a simulated hawk attack is slower in darker conditions, but is independent of hawk colour morph |
topic | Biology (Whole Organism) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731706/ https://www.ncbi.nlm.nih.gov/pubmed/31598248 http://dx.doi.org/10.1098/rsos.190677 |
work_keys_str_mv | AT nebelcarina responsetimeofanavianpreytoasimulatedhawkattackisslowerindarkerconditionsbutisindependentofhawkcolourmorph AT sumasgutnerpetra responsetimeofanavianpreytoasimulatedhawkattackisslowerindarkerconditionsbutisindependentofhawkcolourmorph AT pajotadrien responsetimeofanavianpreytoasimulatedhawkattackisslowerindarkerconditionsbutisindependentofhawkcolourmorph AT amararjun responsetimeofanavianpreytoasimulatedhawkattackisslowerindarkerconditionsbutisindependentofhawkcolourmorph |