Cargando…
Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community
Global climate models predict more frequent periods of drought stress alternated by heavier, but fewer rainfall events in the future. Biodiversity studies have shown that such changed drought stress may be mitigated by plant species richness. Here, we investigate if grassland communities, differing...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732129/ https://www.ncbi.nlm.nih.gov/pubmed/31401664 http://dx.doi.org/10.1007/s00442-019-04476-z |
_version_ | 1783449774752530432 |
---|---|
author | Padilla, Francisco M. Mommer, Liesje de Caluwe, Hannie Smit-Tiekstra, Annemiek E. Visser, Eric J. W. de Kroon, Hans |
author_facet | Padilla, Francisco M. Mommer, Liesje de Caluwe, Hannie Smit-Tiekstra, Annemiek E. Visser, Eric J. W. de Kroon, Hans |
author_sort | Padilla, Francisco M. |
collection | PubMed |
description | Global climate models predict more frequent periods of drought stress alternated by heavier, but fewer rainfall events in the future. Biodiversity studies have shown that such changed drought stress may be mitigated by plant species richness. Here, we investigate if grassland communities, differing in species richness, respond differently to climatic extremes within the growing season. In a 3-year outdoor mesocosm experiment, four grassland species in both monoculture and mixture were subjected to a rainfall distribution regime with two levels: periods of severe drought in the summer intermitted by extreme rainfall events versus regular rainfall over time. Both treatments received the same amount of water over the season. Extreme rainfall combined with drought periods resulted in a 15% decrease in aboveground biomass in the second and third year, compared to the regular rainfall regime. Root biomass was also reduced in the extreme rainfall treatment, particularly in the top soil layer (− 40%). All species developed higher water use efficiencies (less negative leaf δ(13)C) in extreme rainfall than in regular rainfall. These responses to the rainfall/drought treatment were independent of species richness, although the mixtures were on an average more productive in terms of biomass than the monocultures. Our experimental results suggest that mixtures are similarly able to buffer these within-season rainfall extremes than monocultures, which contrasts with findings in the studies on natural droughts. Our work demonstrates the importance of investigating the interactions between rainfall distribution and drought periods for understanding effects of climate change on plant community performance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00442-019-04476-z) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6732129 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-67321292019-09-20 Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community Padilla, Francisco M. Mommer, Liesje de Caluwe, Hannie Smit-Tiekstra, Annemiek E. Visser, Eric J. W. de Kroon, Hans Oecologia Community Ecology–Original Research Global climate models predict more frequent periods of drought stress alternated by heavier, but fewer rainfall events in the future. Biodiversity studies have shown that such changed drought stress may be mitigated by plant species richness. Here, we investigate if grassland communities, differing in species richness, respond differently to climatic extremes within the growing season. In a 3-year outdoor mesocosm experiment, four grassland species in both monoculture and mixture were subjected to a rainfall distribution regime with two levels: periods of severe drought in the summer intermitted by extreme rainfall events versus regular rainfall over time. Both treatments received the same amount of water over the season. Extreme rainfall combined with drought periods resulted in a 15% decrease in aboveground biomass in the second and third year, compared to the regular rainfall regime. Root biomass was also reduced in the extreme rainfall treatment, particularly in the top soil layer (− 40%). All species developed higher water use efficiencies (less negative leaf δ(13)C) in extreme rainfall than in regular rainfall. These responses to the rainfall/drought treatment were independent of species richness, although the mixtures were on an average more productive in terms of biomass than the monocultures. Our experimental results suggest that mixtures are similarly able to buffer these within-season rainfall extremes than monocultures, which contrasts with findings in the studies on natural droughts. Our work demonstrates the importance of investigating the interactions between rainfall distribution and drought periods for understanding effects of climate change on plant community performance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00442-019-04476-z) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2019-08-10 2019 /pmc/articles/PMC6732129/ /pubmed/31401664 http://dx.doi.org/10.1007/s00442-019-04476-z Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Community Ecology–Original Research Padilla, Francisco M. Mommer, Liesje de Caluwe, Hannie Smit-Tiekstra, Annemiek E. Visser, Eric J. W. de Kroon, Hans Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community |
title | Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community |
title_full | Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community |
title_fullStr | Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community |
title_full_unstemmed | Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community |
title_short | Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community |
title_sort | effects of extreme rainfall events are independent of plant species richness in an experimental grassland community |
topic | Community Ecology–Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732129/ https://www.ncbi.nlm.nih.gov/pubmed/31401664 http://dx.doi.org/10.1007/s00442-019-04476-z |
work_keys_str_mv | AT padillafranciscom effectsofextremerainfalleventsareindependentofplantspeciesrichnessinanexperimentalgrasslandcommunity AT mommerliesje effectsofextremerainfalleventsareindependentofplantspeciesrichnessinanexperimentalgrasslandcommunity AT decaluwehannie effectsofextremerainfalleventsareindependentofplantspeciesrichnessinanexperimentalgrasslandcommunity AT smittiekstraannemieke effectsofextremerainfalleventsareindependentofplantspeciesrichnessinanexperimentalgrasslandcommunity AT visserericjw effectsofextremerainfalleventsareindependentofplantspeciesrichnessinanexperimentalgrasslandcommunity AT dekroonhans effectsofextremerainfalleventsareindependentofplantspeciesrichnessinanexperimentalgrasslandcommunity |