Cargando…
rCASC: reproducible classification analysis of single-cell sequencing data
BACKGROUND: Single-cell RNA sequencing is essential for investigating cellular heterogeneity and highlighting cell subpopulation-specific signatures. Single-cell sequencing applications have spread from conventional RNA sequencing to epigenomics, e.g., ATAC-seq. Many related algorithms and tools hav...
Autores principales: | Alessandrì, Luca, Cordero, Francesca, Beccuti, Marco, Arigoni, Maddalena, Olivero, Martina, Romano, Greta, Rabellino, Sergio, Licheri, Nicola, De Libero, Gennaro, Pace, Luigia, Calogero, Raffaele A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732171/ https://www.ncbi.nlm.nih.gov/pubmed/31494672 http://dx.doi.org/10.1093/gigascience/giz105 |
Ejemplares similares
-
Reproducible bioinformatics project: a community for reproducible bioinformatics analysis pipelines
por: Kulkarni, Neha, et al.
Publicado: (2018) -
Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining
por: Alessandri, Luca, et al.
Publicado: (2021) -
SeqBox: RNAseq/ChIPseq reproducible analysis on a consumer game computer
por: Beccuti, Marco, et al.
Publicado: (2018) -
Sparsely Connected Autoencoders: A Multi-Purpose Tool for Single Cell omics Analysis
por: Alessandri, Luca, et al.
Publicado: (2021) -
Optimizing a Massive Parallel Sequencing Workflow for Quantitative miRNA Expression Analysis
por: Cordero, Francesca, et al.
Publicado: (2012)