Cargando…

Down-regulated circPAPPA suppresses the proliferation and invasion of trophoblast cells via the miR-384/STAT3 pathway

Preeclampsia (PE) is the main cause of maternal death in primipara, and commonly results in severe maternal and neonatal complications such as multiple organ dysfunction syndrome. However, the exact pathogenesis of this disease remains unclear. Circular RNAs (circRNAs) are noncoding RNAs that have b...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Wenbo, Wang, Huiyan, Yang, Jingjing, Long, Wei, Zhang, Bin, Liu, Jianbing, Yu, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732364/
https://www.ncbi.nlm.nih.gov/pubmed/31427481
http://dx.doi.org/10.1042/BSR20191965
Descripción
Sumario:Preeclampsia (PE) is the main cause of maternal death in primipara, and commonly results in severe maternal and neonatal complications such as multiple organ dysfunction syndrome. However, the exact pathogenesis of this disease remains unclear. Circular RNAs (circRNAs) are noncoding RNAs that have been shown to be extensively involved in numerous physiological processes, but there is limited knowledge of their functions and mechanisms in PE. In the present study, we found the expression of a circRNA, hsa_circ_0088227 (circRNA of pregnancy-associated plasma protein A, circPAPPA), was down-regulated in both placenta and plasma samples from subjects with PE. Knockdown of circPAPPA led to decreased proliferation and invasion in HTR8-S/Vneo trophoblast cells. miR-384 was identified as a direct target of circPAPPA, and the gene encoding signal transducer and activator of transcription 3 (STAT3) was targeted by miR-384. We found that miR-384 was unregulated in PE, and overexpression of miR-384 could inhibit cell proliferation and invasion. In addition, we showed that the expression of STAT3 was decreased with knockdown of circPAPPA or the overexpression of miR-384 in trophoblast cells, but this decrease was partially reversed when co-transfection was performed with mimics of miR-384 inhibitor and si-circPAPPA. Together, these results suggest that down-regulation of circPAPPA facilitates the onset and development of PE by suppressing trophoblast cells, with involvement of the miR-384/STAT3 signaling pathway. Our study significantly increases the understanding of the occurrence and development of PE, and also provides a molecular target for the treatment of this disorder.