Cargando…
Dracohodin Perochlorate Stimulates Fibroblast Proliferation via EGFR Activation and Downstream ERK/CREB and PI3K/Akt/mTOR Pathways In Vitro
In recent years, an increasing number of natural plant extracts have been determined to be potential drugs for various illnesses. In this study, we investigated the effects of dracorhodin perchlorate (DP) on fibroblast proliferation, which is crucial for wound healing. Cell proliferation assays were...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732626/ https://www.ncbi.nlm.nih.gov/pubmed/31534465 http://dx.doi.org/10.1155/2019/6027186 |
Sumario: | In recent years, an increasing number of natural plant extracts have been determined to be potential drugs for various illnesses. In this study, we investigated the effects of dracorhodin perchlorate (DP) on fibroblast proliferation, which is crucial for wound healing. Cell proliferation assays were performed by different concentrations of DP, and the cell viability was detected by CCK-8 kits. After DP treatment for 24 h, the cell cycle was checked by flow cytometer. EGFR and downstream signaling pathways ERK1/2 and PI3K were examined with DP treatment by western blot. We further determined the effects of the related inhibitors on DP-induced relative protein phosphorylation and cell proliferation. The results showed that 3 μg/mL of DP promoted cell proliferation most significantly at treatment lengths of 24 h, and the percentage of cells in the S + G2 phase increased compared to those of the control group. In western blot detection, we found that DP significantly upregulated EGFR phosphorylation and activated the downstream ERK/CREB and PI3K/Akt/mTOR signaling pathway. Moreover, the results also showed that AG1478 abolished DP-induced relative protein activation and cell proliferation. When U0126 or LY294002 pretreated cells alone, DP-induced p-ERK or p-PI3K downstream proteins and cell proliferation were suppressed compared to those of the control group, but EGFR was not affected. In addition, ICG001 and BEZ235 collectively eliminated DP-induced fibroblast proliferation. Our findings suggest that DP-promoted fibroblast proliferation is stimulated by p-EGFR-induced activation of the ERK1/2-CREB and PI3K/Akt/mTOR pathways. Our present study explored the mechanism of DP-promoted fibroblast proliferation and provided a new basis for wound healing. |
---|