Cargando…
MitoIMP: A Computational Framework for Imputation of Missing Data in Low-Coverage Human Mitochondrial Genome
The incompleteness of partial human mitochondrial genome sequences makes it difficult to perform relevant comparisons among multiple resources. To deal with this issue, we propose a computational framework for deducing missing nucleotides in the human mitochondrial genome. We applied it to worldwide...
Autores principales: | Ishiya, Koji, Mizuno, Fuzuki, Wang, Li, Ueda, Shintaroh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732850/ https://www.ncbi.nlm.nih.gov/pubmed/31523131 http://dx.doi.org/10.1177/1177932219873884 |
Ejemplares similares
-
MitoSuite: a graphical tool for human mitochondrial genome profiling in massive parallel sequencing
por: Ishiya, Koji, et al.
Publicado: (2017) -
A biomolecular anthropological investigation of William Adams, the first SAMURAI from England
por: Mizuno, Fuzuki, et al.
Publicado: (2020) -
A framework for extending trial design to facilitate missing data sensitivity analyses
por: Mason, Alexina J., et al.
Publicado: (2020) -
Imputing HIV treatment start dates from routine laboratory data in South Africa: a validation study
por: Maskew, Mhairi, et al.
Publicado: (2017) -
Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis
por: Eekhout, Iris, et al.
Publicado: (2017)