Cargando…
MicroRNA-101 modulates cisplatin chemoresistance in liver cancer cells via the DNA-PKcs signaling pathway
Due to the high incidence of liver cancer, chemoradiotherapy and prognosis of liver cancer are a primary focus of medical research. microRNAs (miRNAs/miRs) serve crucial roles in resistance to chemotherapy and radiotherapy. The aim of the present study was to investigate the effects of miR-101 on th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733017/ https://www.ncbi.nlm.nih.gov/pubmed/31516578 http://dx.doi.org/10.3892/ol.2019.10674 |
Sumario: | Due to the high incidence of liver cancer, chemoradiotherapy and prognosis of liver cancer are a primary focus of medical research. microRNAs (miRNAs/miRs) serve crucial roles in resistance to chemotherapy and radiotherapy. The aim of the present study was to investigate the effects of miR-101 on the chemotherapeutic efficacy of cisplatin (CDDP) in liver cancer. First, human liver cancer cells (HepG2) were transfected with a miR-101 mimic or miR-101 inhibitor to bidirectionally regulate the expression of miR-101. Cell proliferation, apoptosis, intracellular reactive oxygen species and comet assay results indicated that the upregulation of miR-101 sensitized HepG2 cells to CDDP, and downregulation of miR-101 reduced chemosensitivity. A xenograft mouse model further confirmed that miR-101 overexpression increased CDDP sensitivity in liver cancer. Luciferase reporter and western blotting assays demonstrated that transfection of the miR-101 mimic markedly reduced activity of the DNA-dependent protein kinase catalytic subunit/protein kinase B/mammalian target of rapamycin (DNA-PKcs/Akt/mTOR) pathway and increased expression of apoptotic protein caspase 3, which is induced by CDDP treatment. By contrast, miR-101 inhibitors partially reversed these changes. Moreover, the miR-101 mimic suppressed activity of the nuclear factor-κB (NF-κB) pathway, leading to increased susceptibility of HepG2 cells to chemotherapeutic agents. In conclusion, miR-101 overexpression augmented cytotoxicity and reduced chemoresistance to CDDP in HepG2 cells, and this was associated with negative regulation of DNA-PKcs/Akt/NF-κB signaling. |
---|