Cargando…
Fabrication of Silica Nanoparticle Monolayer Arrays Using an Anodic Aluminum Oxide Template
[Image: see text] Non-close-packed (NCP) silica nanoparticle monolayer arrays (SNMA) on ordered porous anodic aluminum oxide (AAO) templates were fabricated for the first time by a novel two-step spin-coating technique. The obtained NCP-SNMA-AAO was composed of silica nanoparticles (average primary...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733172/ https://www.ncbi.nlm.nih.gov/pubmed/31508559 http://dx.doi.org/10.1021/acsomega.9b02114 |
Sumario: | [Image: see text] Non-close-packed (NCP) silica nanoparticle monolayer arrays (SNMA) on ordered porous anodic aluminum oxide (AAO) templates were fabricated for the first time by a novel two-step spin-coating technique. The obtained NCP-SNMA-AAO was composed of silica nanoparticles (average primary particle size of 440 nm) and well-organized nanopores on the AAO substrates. NCP-SNMA-AAO with a supporting ratio of 87% silica nanoparticles showed a hydrophilic surface (water contact angle of 51.0°), while the original AAO substrate shows a hydrophobic surface (water contact angle of 107.9°). The maximum coefficient of static friction was decreased by 29% (0.327 → 0.233). The coefficient of dynamic friction was also decreased by 20% (0.281 → 0.226). We found that controlling the silica supporting ratio using the two-step spin-coating technique is an effective approach for surface modification of an AAO substrate. |
---|