Cargando…

Fabrication of Silica Nanoparticle Monolayer Arrays Using an Anodic Aluminum Oxide Template

[Image: see text] Non-close-packed (NCP) silica nanoparticle monolayer arrays (SNMA) on ordered porous anodic aluminum oxide (AAO) templates were fabricated for the first time by a novel two-step spin-coating technique. The obtained NCP-SNMA-AAO was composed of silica nanoparticles (average primary...

Descripción completa

Detalles Bibliográficos
Autores principales: Sekiguchi, Kazutoshi, Nakanishi, Takayuki, Segawa, Hiroyo, Yasumori, Atsuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733172/
https://www.ncbi.nlm.nih.gov/pubmed/31508559
http://dx.doi.org/10.1021/acsomega.9b02114
Descripción
Sumario:[Image: see text] Non-close-packed (NCP) silica nanoparticle monolayer arrays (SNMA) on ordered porous anodic aluminum oxide (AAO) templates were fabricated for the first time by a novel two-step spin-coating technique. The obtained NCP-SNMA-AAO was composed of silica nanoparticles (average primary particle size of 440 nm) and well-organized nanopores on the AAO substrates. NCP-SNMA-AAO with a supporting ratio of 87% silica nanoparticles showed a hydrophilic surface (water contact angle of 51.0°), while the original AAO substrate shows a hydrophobic surface (water contact angle of 107.9°). The maximum coefficient of static friction was decreased by 29% (0.327 → 0.233). The coefficient of dynamic friction was also decreased by 20% (0.281 → 0.226). We found that controlling the silica supporting ratio using the two-step spin-coating technique is an effective approach for surface modification of an AAO substrate.