Cargando…

Synthesis and Antimicrobial Studies of 4-[3-(3-Fluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic Acid and 4-[3-(4-Fluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic Acid as Potent Growth Inhibitors of Drug-Resistant Bacteria

[Image: see text] Microbial resistance to antibiotics is an urgent and worldwide concern. Several pyrazole-derived hydrazones were synthesized by using benign reaction conditions. Several of these molecules are potent growth inhibitors of drug-resistant strains of Staphylococcus aureus and Acinetoba...

Descripción completa

Detalles Bibliográficos
Autores principales: Whitt, Jedidiah, Duke, Cameron, Ali, Mohamad Akbar, Chambers, Steven A., Khan, Md Mahbub Kabir, Gilmore, David, Alam, Mohammad A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733178/
https://www.ncbi.nlm.nih.gov/pubmed/31508552
http://dx.doi.org/10.1021/acsomega.9b01967
Descripción
Sumario:[Image: see text] Microbial resistance to antibiotics is an urgent and worldwide concern. Several pyrazole-derived hydrazones were synthesized by using benign reaction conditions. Several of these molecules are potent growth inhibitors of drug-resistant strains of Staphylococcus aureus and Acinetobacter baumannii with minimum inhibitory concentration values as low as 0.39 μg/mL. Furthermore, these molecules are nontoxic to human cells at high concentrations. Some of these molecules were tested for their ability to disrupt the bacterial membrane by using the SYTO-9/propidium iodide (BacLight) assay.