Cargando…

Evaluation of larvicidal activity of esters of 4-mercapto-2-butenoic acid against Aedes albopictus (Diptera: Culicidae)

Aedes albopictus (Skuse) (Diptera: Culicidae), an aggressive and annoying vector of several arbovirus including Chikungunya and Zika, is a serious health problem worldwide. Control of this mosquito is difficult because of high adaptability, egg resistance to dehydration and ability to exploit many m...

Descripción completa

Detalles Bibliográficos
Autores principales: Pezzi, Marco, Zamberlan, Francesco, Chicca, Milvia, Leis, Marilena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733358/
https://www.ncbi.nlm.nih.gov/pubmed/31516337
http://dx.doi.org/10.1016/j.sjbs.2018.03.011
Descripción
Sumario:Aedes albopictus (Skuse) (Diptera: Culicidae), an aggressive and annoying vector of several arbovirus including Chikungunya and Zika, is a serious health problem worldwide. Control of this mosquito is difficult because of high adaptability, egg resistance to dehydration and ability to exploit many man-made microhabitats. The most effective strategy appears the control of larval population. Based on previous data showing a larvicidal effect of plant extracts containing sulfhydryl and isothiocyanate compounds, we evaluated by bioassays the toxicity of three synthetic esters of 4-mercapto-2-butenoic acid on larvae of A. albopictus in comparison to cypermethrin. Among the compounds tested, the most effective was n-octyl 4-mercapto-2-butenoate, about 5 times more effective than ethyl 4-mercaptobut-2-enoate and about 20 times more effective than menthyl 4-mercaptobut-2-enoate. We advance the hypothesis that the larvicidal properties of n-octyl 4-mercapto-2-butenoate are due to its hydrophobic alkyl chain, longer than that of the other two compounds. This chain confers to the molecule the ability to spread on water surface and interfere with larval respiration. The larvicidal activity of n-octyl 4-mercapto-2-butenoate against A. albopictus appears interesting and may be developed after toxicological evaluation on vertebrates and humans, and environmental toxicity tests in compliance with WHO and ECDC rules.