Cargando…

De Novo Design of Bioactive Protein Switches

Allosteric regulation of protein function is widespread in biology, but challenging for de novo protein design as it requires explicit design of multiple states with comparable free energies. We explore the possibility of de novo designing switchable protein systems through modulation of competing i...

Descripción completa

Detalles Bibliográficos
Autores principales: Langan, Robert A., Boyken, Scott E., Ng, Andrew H., Samson, Jennifer A., Dods, Galen, Westbrook, Alexandra M., Nguyen, Taylor H., Lajoie, Marc J., Chen, Zibo, Berger, Stephanie, Mulligan, Vikram Khipple, Dueber, John E., Novak, Walter R.P., El-Samad, Hana, Baker, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733528/
https://www.ncbi.nlm.nih.gov/pubmed/31341284
http://dx.doi.org/10.1038/s41586-019-1432-8
_version_ 1783449999689908224
author Langan, Robert A.
Boyken, Scott E.
Ng, Andrew H.
Samson, Jennifer A.
Dods, Galen
Westbrook, Alexandra M.
Nguyen, Taylor H.
Lajoie, Marc J.
Chen, Zibo
Berger, Stephanie
Mulligan, Vikram Khipple
Dueber, John E.
Novak, Walter R.P.
El-Samad, Hana
Baker, David
author_facet Langan, Robert A.
Boyken, Scott E.
Ng, Andrew H.
Samson, Jennifer A.
Dods, Galen
Westbrook, Alexandra M.
Nguyen, Taylor H.
Lajoie, Marc J.
Chen, Zibo
Berger, Stephanie
Mulligan, Vikram Khipple
Dueber, John E.
Novak, Walter R.P.
El-Samad, Hana
Baker, David
author_sort Langan, Robert A.
collection PubMed
description Allosteric regulation of protein function is widespread in biology, but challenging for de novo protein design as it requires explicit design of multiple states with comparable free energies. We explore the possibility of de novo designing switchable protein systems through modulation of competing inter and intra-molecular interactions. We design a static, five-helix “Cage” with a single interface that can interact either intra-molecularly with a terminal “Latch” helix or inter-molecularly with a peptide “Key”. Encoded on the Latch are functional motifs for binding, degradation, or nuclear export that function only when the Key displaces the Latch from the Cage. We describe orthogonal Cage-Key systems that function in vitro, in yeast and in mammalian cells with up to 40-fold activation of function by Key. The design of switchable protein function controlled by induced conformational change is a milestone for de novo protein design and opens up new avenues for synthetic biology and cell engineering.
format Online
Article
Text
id pubmed-6733528
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-67335282020-01-24 De Novo Design of Bioactive Protein Switches Langan, Robert A. Boyken, Scott E. Ng, Andrew H. Samson, Jennifer A. Dods, Galen Westbrook, Alexandra M. Nguyen, Taylor H. Lajoie, Marc J. Chen, Zibo Berger, Stephanie Mulligan, Vikram Khipple Dueber, John E. Novak, Walter R.P. El-Samad, Hana Baker, David Nature Article Allosteric regulation of protein function is widespread in biology, but challenging for de novo protein design as it requires explicit design of multiple states with comparable free energies. We explore the possibility of de novo designing switchable protein systems through modulation of competing inter and intra-molecular interactions. We design a static, five-helix “Cage” with a single interface that can interact either intra-molecularly with a terminal “Latch” helix or inter-molecularly with a peptide “Key”. Encoded on the Latch are functional motifs for binding, degradation, or nuclear export that function only when the Key displaces the Latch from the Cage. We describe orthogonal Cage-Key systems that function in vitro, in yeast and in mammalian cells with up to 40-fold activation of function by Key. The design of switchable protein function controlled by induced conformational change is a milestone for de novo protein design and opens up new avenues for synthetic biology and cell engineering. 2019-07-24 2019-08 /pmc/articles/PMC6733528/ /pubmed/31341284 http://dx.doi.org/10.1038/s41586-019-1432-8 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints)
spellingShingle Article
Langan, Robert A.
Boyken, Scott E.
Ng, Andrew H.
Samson, Jennifer A.
Dods, Galen
Westbrook, Alexandra M.
Nguyen, Taylor H.
Lajoie, Marc J.
Chen, Zibo
Berger, Stephanie
Mulligan, Vikram Khipple
Dueber, John E.
Novak, Walter R.P.
El-Samad, Hana
Baker, David
De Novo Design of Bioactive Protein Switches
title De Novo Design of Bioactive Protein Switches
title_full De Novo Design of Bioactive Protein Switches
title_fullStr De Novo Design of Bioactive Protein Switches
title_full_unstemmed De Novo Design of Bioactive Protein Switches
title_short De Novo Design of Bioactive Protein Switches
title_sort de novo design of bioactive protein switches
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733528/
https://www.ncbi.nlm.nih.gov/pubmed/31341284
http://dx.doi.org/10.1038/s41586-019-1432-8
work_keys_str_mv AT langanroberta denovodesignofbioactiveproteinswitches
AT boykenscotte denovodesignofbioactiveproteinswitches
AT ngandrewh denovodesignofbioactiveproteinswitches
AT samsonjennifera denovodesignofbioactiveproteinswitches
AT dodsgalen denovodesignofbioactiveproteinswitches
AT westbrookalexandram denovodesignofbioactiveproteinswitches
AT nguyentaylorh denovodesignofbioactiveproteinswitches
AT lajoiemarcj denovodesignofbioactiveproteinswitches
AT chenzibo denovodesignofbioactiveproteinswitches
AT bergerstephanie denovodesignofbioactiveproteinswitches
AT mulliganvikramkhipple denovodesignofbioactiveproteinswitches
AT dueberjohne denovodesignofbioactiveproteinswitches
AT novakwalterrp denovodesignofbioactiveproteinswitches
AT elsamadhana denovodesignofbioactiveproteinswitches
AT bakerdavid denovodesignofbioactiveproteinswitches