Cargando…
De Novo Design of Bioactive Protein Switches
Allosteric regulation of protein function is widespread in biology, but challenging for de novo protein design as it requires explicit design of multiple states with comparable free energies. We explore the possibility of de novo designing switchable protein systems through modulation of competing i...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733528/ https://www.ncbi.nlm.nih.gov/pubmed/31341284 http://dx.doi.org/10.1038/s41586-019-1432-8 |
_version_ | 1783449999689908224 |
---|---|
author | Langan, Robert A. Boyken, Scott E. Ng, Andrew H. Samson, Jennifer A. Dods, Galen Westbrook, Alexandra M. Nguyen, Taylor H. Lajoie, Marc J. Chen, Zibo Berger, Stephanie Mulligan, Vikram Khipple Dueber, John E. Novak, Walter R.P. El-Samad, Hana Baker, David |
author_facet | Langan, Robert A. Boyken, Scott E. Ng, Andrew H. Samson, Jennifer A. Dods, Galen Westbrook, Alexandra M. Nguyen, Taylor H. Lajoie, Marc J. Chen, Zibo Berger, Stephanie Mulligan, Vikram Khipple Dueber, John E. Novak, Walter R.P. El-Samad, Hana Baker, David |
author_sort | Langan, Robert A. |
collection | PubMed |
description | Allosteric regulation of protein function is widespread in biology, but challenging for de novo protein design as it requires explicit design of multiple states with comparable free energies. We explore the possibility of de novo designing switchable protein systems through modulation of competing inter and intra-molecular interactions. We design a static, five-helix “Cage” with a single interface that can interact either intra-molecularly with a terminal “Latch” helix or inter-molecularly with a peptide “Key”. Encoded on the Latch are functional motifs for binding, degradation, or nuclear export that function only when the Key displaces the Latch from the Cage. We describe orthogonal Cage-Key systems that function in vitro, in yeast and in mammalian cells with up to 40-fold activation of function by Key. The design of switchable protein function controlled by induced conformational change is a milestone for de novo protein design and opens up new avenues for synthetic biology and cell engineering. |
format | Online Article Text |
id | pubmed-6733528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-67335282020-01-24 De Novo Design of Bioactive Protein Switches Langan, Robert A. Boyken, Scott E. Ng, Andrew H. Samson, Jennifer A. Dods, Galen Westbrook, Alexandra M. Nguyen, Taylor H. Lajoie, Marc J. Chen, Zibo Berger, Stephanie Mulligan, Vikram Khipple Dueber, John E. Novak, Walter R.P. El-Samad, Hana Baker, David Nature Article Allosteric regulation of protein function is widespread in biology, but challenging for de novo protein design as it requires explicit design of multiple states with comparable free energies. We explore the possibility of de novo designing switchable protein systems through modulation of competing inter and intra-molecular interactions. We design a static, five-helix “Cage” with a single interface that can interact either intra-molecularly with a terminal “Latch” helix or inter-molecularly with a peptide “Key”. Encoded on the Latch are functional motifs for binding, degradation, or nuclear export that function only when the Key displaces the Latch from the Cage. We describe orthogonal Cage-Key systems that function in vitro, in yeast and in mammalian cells with up to 40-fold activation of function by Key. The design of switchable protein function controlled by induced conformational change is a milestone for de novo protein design and opens up new avenues for synthetic biology and cell engineering. 2019-07-24 2019-08 /pmc/articles/PMC6733528/ /pubmed/31341284 http://dx.doi.org/10.1038/s41586-019-1432-8 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Reprints and permissions information is available at www.nature.com/reprints (http://www.nature.com/reprints) |
spellingShingle | Article Langan, Robert A. Boyken, Scott E. Ng, Andrew H. Samson, Jennifer A. Dods, Galen Westbrook, Alexandra M. Nguyen, Taylor H. Lajoie, Marc J. Chen, Zibo Berger, Stephanie Mulligan, Vikram Khipple Dueber, John E. Novak, Walter R.P. El-Samad, Hana Baker, David De Novo Design of Bioactive Protein Switches |
title | De Novo Design of Bioactive Protein Switches |
title_full | De Novo Design of Bioactive Protein Switches |
title_fullStr | De Novo Design of Bioactive Protein Switches |
title_full_unstemmed | De Novo Design of Bioactive Protein Switches |
title_short | De Novo Design of Bioactive Protein Switches |
title_sort | de novo design of bioactive protein switches |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733528/ https://www.ncbi.nlm.nih.gov/pubmed/31341284 http://dx.doi.org/10.1038/s41586-019-1432-8 |
work_keys_str_mv | AT langanroberta denovodesignofbioactiveproteinswitches AT boykenscotte denovodesignofbioactiveproteinswitches AT ngandrewh denovodesignofbioactiveproteinswitches AT samsonjennifera denovodesignofbioactiveproteinswitches AT dodsgalen denovodesignofbioactiveproteinswitches AT westbrookalexandram denovodesignofbioactiveproteinswitches AT nguyentaylorh denovodesignofbioactiveproteinswitches AT lajoiemarcj denovodesignofbioactiveproteinswitches AT chenzibo denovodesignofbioactiveproteinswitches AT bergerstephanie denovodesignofbioactiveproteinswitches AT mulliganvikramkhipple denovodesignofbioactiveproteinswitches AT dueberjohne denovodesignofbioactiveproteinswitches AT novakwalterrp denovodesignofbioactiveproteinswitches AT elsamadhana denovodesignofbioactiveproteinswitches AT bakerdavid denovodesignofbioactiveproteinswitches |