Cargando…

Notch signalling maintains Hedgehog responsiveness via a Gli-dependent mechanism during spinal cord patterning in zebrafish

Spinal cord patterning is orchestrated by multiple cell signalling pathways. Neural progenitors are maintained by Notch signalling, whereas ventral neural fates are specified by Hedgehog (Hh) signalling. However, how dynamic interactions between Notch and Hh signalling drive the precise pattern form...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacobs, Craig T, Huang, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733594/
https://www.ncbi.nlm.nih.gov/pubmed/31453809
http://dx.doi.org/10.7554/eLife.49252
Descripción
Sumario:Spinal cord patterning is orchestrated by multiple cell signalling pathways. Neural progenitors are maintained by Notch signalling, whereas ventral neural fates are specified by Hedgehog (Hh) signalling. However, how dynamic interactions between Notch and Hh signalling drive the precise pattern formation is still unknown. We applied the PHRESH (PHotoconvertible REporter of Signalling History) technique to analyse cell signalling dynamics in vivo during zebrafish spinal cord development. This approach reveals that Notch and Hh signalling display similar spatiotemporal kinetics throughout spinal cord patterning. Notch signalling functions upstream to control Hh response of neural progenitor cells. Using gain- and loss-of-function tools, we demonstrate that this regulation occurs not at the level of upstream regulators or primary cilia, but rather at the level of Gli transcription factors. Our results indicate that Notch signalling maintains Hh responsiveness of neural progenitors via a Gli-dependent mechanism in the spinal cord.