Cargando…
Functional nano-catalyzed pyrolyzates from branch of Cinnamomum camphora
Cinnamomum camphora is an excellent tree species for construction of forest construction of Henan Province, China. The diverse bioactive components of nano-catalyzed pyrolyzates form cold-acclimated C. camphora branch (CCB) in North China were explored. The raw powder of CCB treated with nano-cataly...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733784/ https://www.ncbi.nlm.nih.gov/pubmed/31516353 http://dx.doi.org/10.1016/j.sjbs.2019.06.003 |
Sumario: | Cinnamomum camphora is an excellent tree species for construction of forest construction of Henan Province, China. The diverse bioactive components of nano-catalyzed pyrolyzates form cold-acclimated C. camphora branch (CCB) in North China were explored. The raw powder of CCB treated with nano-catalyst (Ag, NiO, (1)/(2)Ag + (1)/(2)NiO) were pyrolyzed at two temperatures (550 °C and 700 °C), respectively. The main pyrolyzates are bioactive components of bioenergy, biomedicines, food additive, spices, cosmetics and chemical, whose total relative contents at 550 °C pyrolyzates are higher than those at 700 °C pyrolyzates. There are abundant components of spices and biomedicine at 550 °C pyrolyzates, while more spices and food additive at 700 °C pyrolyzates. At 550 °C, the content of biomedicine components reaches the highest by (1)/(2)Ag + (1)/(2)NiO nanocatalysis, while the contents of spices and food additive components reach the highest by NiO nanocatalysis. At 700 °C, the content of bioenergy components reaches the highest by (1)/(2)Ag + (1)/(2)NiO nanocatalysis, and the content of cosmetics components reaches the highest by Ag nanocatalysis. The findings suggested that the branch of the cold-acclimated C. camphora have the potential to develop into valued-added products of bioenergy, biomedicine, cosmetics, spices and food additive by nanocatalysis. |
---|