Cargando…
Automated tracking of level of consciousness and delirium in critical illness using deep learning
Over- and under-sedation are common in the ICU, and contribute to poor ICU outcomes including delirium. Behavioral assessments, such as Richmond Agitation-Sedation Scale (RASS) for monitoring levels of sedation and Confusion Assessment Method for the ICU (CAM-ICU) for detecting signs of delirium, ar...
Autores principales: | Sun, Haoqi, Kimchi, Eyal, Akeju, Oluwaseun, Nagaraj, Sunil B., McClain, Lauren M., Zhou, David W., Boyle, Emily, Zheng, Wei-Long, Ge, Wendong, Westover, M. Brandon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733797/ https://www.ncbi.nlm.nih.gov/pubmed/31508499 http://dx.doi.org/10.1038/s41746-019-0167-0 |
Ejemplares similares
-
ICU delirium burden predicts functional neurologic outcomes
por: Paixao, Luis, et al.
Publicado: (2021) -
Identifying Patients With Delirium Based on Unstructured Clinical Notes: Observational Study
por: Ge, Wendong, et al.
Publicado: (2022) -
VE-CAM-S: Visual EEG-Based Grading of Delirium Severity and Associations With Clinical Outcomes
por: Tesh, Ryan A., et al.
Publicado: (2022) -
Automated detection of immune effector cell‐associated neurotoxicity syndrome via quantitative EEG
por: Eckhardt, Christine A., et al.
Publicado: (2023) -
Exploiting labels from multiple experts in automated sleep scoring
por: Nasiri, Samaneh, et al.
Publicado: (2023)