Cargando…

Liangyi Gao extends lifespan and exerts an antiaging effect in Caenorhabditis elegans by modulating DAF-16/FOXO

Liangyi Gao (LYG), a traditional Chinese medicine, is composed of Ginseng and Radix Rehmanniae Preparata, both of which have been shown to have antiaging properties. In Eastern countries, LYG is used to delay functional declines related to aging and has an obvious antiaging effect in clinical practi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Liling, Sun, Chen, Pei, Zhong, Yun, Tianchan, Fan, Shaoyi, Long, Simei, Wu, Tengteng, Chen, Ziwen, Yang, Zhimin, Xu, Fuping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733806/
https://www.ncbi.nlm.nih.gov/pubmed/31332584
http://dx.doi.org/10.1007/s10522-019-09820-7
Descripción
Sumario:Liangyi Gao (LYG), a traditional Chinese medicine, is composed of Ginseng and Radix Rehmanniae Preparata, both of which have been shown to have antiaging properties. In Eastern countries, LYG is used to delay functional declines related to aging and has an obvious antiaging effect in clinical practice. However, little data from evidence-based medicine is available regarding whether LYG is beneficial overall, particularly with respect to lifespan, and how LYG functions. To address these issues, Caenorhabditis elegans, a useful organism for such studies, was employed to explore the antiaging effect and mechanism of LYG in this study. The results showed that LYG could obviously extend lifespan and slow aging-related declines in N2 wild-type C. elegans. To further characterize these antiaging effects and stress resistance, reproductive tests and other aging-related tests were performed. We found that LYG enhanced resistance against oxidative and thermal stress, reproduction, pharynx pumping, motility and growth in N2 wild-type C. elegans. In addition, we analyzed the mechanism for these effects by measuring the activity of superoxide dismutase (SOD) and the expression levels of aging-related genes. We found that LYG enhanced the activities of antioxidant enzymes and upregulated the genes daf-16, sod-3 and sir-2.1, which mediated stress resistance and longevity. In conclusion, LYG had robust and reproducible life-prolonging and antiaging benefits in C. elegans via DAF-16/FOXO regulation.