Cargando…

Virulence, antimicrobial and heavy metal tolerance, and genetic diversity of Vibrio cholerae recovered from commonly consumed freshwater fish

Vibrio cholerae is a leading waterborne pathogen worldwide. Continuous monitoring of V. cholerae contamination in aquatic products and identification of risk factors are crucial for assuring food safety. In this study, we determined the virulence, antimicrobial susceptibility, heavy metal tolerance,...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Mengjie, Wu, Jinrong, Chen, Lanming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733808/
https://www.ncbi.nlm.nih.gov/pubmed/31325090
http://dx.doi.org/10.1007/s11356-019-05287-8
Descripción
Sumario:Vibrio cholerae is a leading waterborne pathogen worldwide. Continuous monitoring of V. cholerae contamination in aquatic products and identification of risk factors are crucial for assuring food safety. In this study, we determined the virulence, antimicrobial susceptibility, heavy metal tolerance, and genetic diversity of 400 V. cholerae isolates recovered from commonly consumed freshwater fish (Aristichthys nobilis, Carassius auratus, Ctenopharyngodon idellus, and Parabramis pekinensis) collected in July and August of 2017 in Shanghai, China. V. cholerae has not been previously detected in the half of these fish species. The results revealed an extremely low occurrence of pathogenic V. cholerae carrying the major virulence genes ctxAB (0.0%), tcpA (0.0%), ace (0.0%), and zot (0.0%). However, high incidence of virulence-associated genes was observed, including the RTX toxin gene cluster (rtxA-D) (83.0–97.0%), hlyA (87.8%), hapA (95.0%), and tlh (76.0%). Meanwhile, high percentages of resistance to antimicrobial agents streptomycin (65.3%), ampicillin (44.5%), and rifampicin (24.0%) were observed. Approximately 30.5% of the isolates displayed multidrug resistant (MDR) phenotypes with 42 resistance profiles, which were significantly different among the four fish species (MARI, P = 0.001). Additionally, tolerance of isolates to heavy metals Hg(2+) (49.3%), Zn(2+) (30.3%), and Pb(2+) (12.0%) was observed. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR)-based fingerprinting of the 400 V. cholerae isolates revealed 328 ERIC-genotypes, which demonstrated a large degree of genomic variation among the isolates. Overall, the results of this study support the need for food safety risk assessment of aquatic products. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11356-019-05287-8) contains supplementary material, which is available to authorized users.