Cargando…

[Formula: see text] Law in the Cubic Lattice

We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers [Formula: see text] of the edge perimeter are shown to deviate from a corresponding cubic Wul...

Descripción completa

Detalles Bibliográficos
Autores principales: Mainini, Edoardo, Piovano, Paolo, Schmidt, Bernd, Stefanelli, Ulisse
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733839/
https://www.ncbi.nlm.nih.gov/pubmed/31555015
http://dx.doi.org/10.1007/s10955-019-02350-z
_version_ 1783450035814400000
author Mainini, Edoardo
Piovano, Paolo
Schmidt, Bernd
Stefanelli, Ulisse
author_facet Mainini, Edoardo
Piovano, Paolo
Schmidt, Bernd
Stefanelli, Ulisse
author_sort Mainini, Edoardo
collection PubMed
description We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers [Formula: see text] of the edge perimeter are shown to deviate from a corresponding cubic Wulff configuration with respect to their symmetric difference by at most [Formula: see text] elements. The exponent 3 / 4 is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions.
format Online
Article
Text
id pubmed-6733839
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-67338392019-09-23 [Formula: see text] Law in the Cubic Lattice Mainini, Edoardo Piovano, Paolo Schmidt, Bernd Stefanelli, Ulisse J Stat Phys Article We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers [Formula: see text] of the edge perimeter are shown to deviate from a corresponding cubic Wulff configuration with respect to their symmetric difference by at most [Formula: see text] elements. The exponent 3 / 4 is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions. Springer US 2019-07-24 2019 /pmc/articles/PMC6733839/ /pubmed/31555015 http://dx.doi.org/10.1007/s10955-019-02350-z Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Mainini, Edoardo
Piovano, Paolo
Schmidt, Bernd
Stefanelli, Ulisse
[Formula: see text] Law in the Cubic Lattice
title [Formula: see text] Law in the Cubic Lattice
title_full [Formula: see text] Law in the Cubic Lattice
title_fullStr [Formula: see text] Law in the Cubic Lattice
title_full_unstemmed [Formula: see text] Law in the Cubic Lattice
title_short [Formula: see text] Law in the Cubic Lattice
title_sort [formula: see text] law in the cubic lattice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733839/
https://www.ncbi.nlm.nih.gov/pubmed/31555015
http://dx.doi.org/10.1007/s10955-019-02350-z
work_keys_str_mv AT maininiedoardo formulaseetextlawinthecubiclattice
AT piovanopaolo formulaseetextlawinthecubiclattice
AT schmidtbernd formulaseetextlawinthecubiclattice
AT stefanelliulisse formulaseetextlawinthecubiclattice