Cargando…
[Formula: see text] Law in the Cubic Lattice
We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers [Formula: see text] of the edge perimeter are shown to deviate from a corresponding cubic Wul...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733839/ https://www.ncbi.nlm.nih.gov/pubmed/31555015 http://dx.doi.org/10.1007/s10955-019-02350-z |
_version_ | 1783450035814400000 |
---|---|
author | Mainini, Edoardo Piovano, Paolo Schmidt, Bernd Stefanelli, Ulisse |
author_facet | Mainini, Edoardo Piovano, Paolo Schmidt, Bernd Stefanelli, Ulisse |
author_sort | Mainini, Edoardo |
collection | PubMed |
description | We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers [Formula: see text] of the edge perimeter are shown to deviate from a corresponding cubic Wulff configuration with respect to their symmetric difference by at most [Formula: see text] elements. The exponent 3 / 4 is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions. |
format | Online Article Text |
id | pubmed-6733839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-67338392019-09-23 [Formula: see text] Law in the Cubic Lattice Mainini, Edoardo Piovano, Paolo Schmidt, Bernd Stefanelli, Ulisse J Stat Phys Article We investigate the Edge-Isoperimetric Problem (EIP) for sets with n elements of the cubic lattice by emphasizing its relation with the emergence of the Wulff shape in the crystallization problem. Minimizers [Formula: see text] of the edge perimeter are shown to deviate from a corresponding cubic Wulff configuration with respect to their symmetric difference by at most [Formula: see text] elements. The exponent 3 / 4 is optimal. This extends to the cubic lattice analogous results that have already been established for the triangular, the hexagonal, and the square lattice in two space dimensions. Springer US 2019-07-24 2019 /pmc/articles/PMC6733839/ /pubmed/31555015 http://dx.doi.org/10.1007/s10955-019-02350-z Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Mainini, Edoardo Piovano, Paolo Schmidt, Bernd Stefanelli, Ulisse [Formula: see text] Law in the Cubic Lattice |
title | [Formula: see text] Law in the Cubic Lattice |
title_full | [Formula: see text] Law in the Cubic Lattice |
title_fullStr | [Formula: see text] Law in the Cubic Lattice |
title_full_unstemmed | [Formula: see text] Law in the Cubic Lattice |
title_short | [Formula: see text] Law in the Cubic Lattice |
title_sort | [formula: see text] law in the cubic lattice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733839/ https://www.ncbi.nlm.nih.gov/pubmed/31555015 http://dx.doi.org/10.1007/s10955-019-02350-z |
work_keys_str_mv | AT maininiedoardo formulaseetextlawinthecubiclattice AT piovanopaolo formulaseetextlawinthecubiclattice AT schmidtbernd formulaseetextlawinthecubiclattice AT stefanelliulisse formulaseetextlawinthecubiclattice |