Cargando…

Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response

Signaling diversity of G protein-coupled (GPCR) ligands provides novel opportunities to develop more effective, better-tolerated therapeutics. Taking advantage of these opportunities requires identifying which effectors should be specifically activated or avoided so as to promote desired clinical re...

Descripción completa

Detalles Bibliográficos
Autores principales: Benredjem, Besma, Gallion, Jonathan, Pelletier, Dennis, Dallaire, Paul, Charbonneau, Johanie, Cawkill, Darren, Nagi, Karim, Gosink, Mark, Lukasheva, Viktoryia, Jenkinson, Stephen, Ren, Yong, Somps, Christopher, Murat, Brigitte, Van Der Westhuizen, Emma, Le Gouill, Christian, Lichtarge, Olivier, Schmidt, Anne, Bouvier, Michel, Pineyro, Graciela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733853/
https://www.ncbi.nlm.nih.gov/pubmed/31501422
http://dx.doi.org/10.1038/s41467-019-11875-6
_version_ 1783450039059742720
author Benredjem, Besma
Gallion, Jonathan
Pelletier, Dennis
Dallaire, Paul
Charbonneau, Johanie
Cawkill, Darren
Nagi, Karim
Gosink, Mark
Lukasheva, Viktoryia
Jenkinson, Stephen
Ren, Yong
Somps, Christopher
Murat, Brigitte
Van Der Westhuizen, Emma
Le Gouill, Christian
Lichtarge, Olivier
Schmidt, Anne
Bouvier, Michel
Pineyro, Graciela
author_facet Benredjem, Besma
Gallion, Jonathan
Pelletier, Dennis
Dallaire, Paul
Charbonneau, Johanie
Cawkill, Darren
Nagi, Karim
Gosink, Mark
Lukasheva, Viktoryia
Jenkinson, Stephen
Ren, Yong
Somps, Christopher
Murat, Brigitte
Van Der Westhuizen, Emma
Le Gouill, Christian
Lichtarge, Olivier
Schmidt, Anne
Bouvier, Michel
Pineyro, Graciela
author_sort Benredjem, Besma
collection PubMed
description Signaling diversity of G protein-coupled (GPCR) ligands provides novel opportunities to develop more effective, better-tolerated therapeutics. Taking advantage of these opportunities requires identifying which effectors should be specifically activated or avoided so as to promote desired clinical responses and avoid side effects. However, identifying signaling profiles that support desired clinical outcomes remains challenging. This study describes signaling diversity of mu opioid receptor (MOR) ligands in terms of logistic and operational parameters for ten different in vitro readouts. It then uses unsupervised clustering of curve parameters to: classify MOR ligands according to similarities in type and magnitude of response, associate resulting ligand categories with frequency of undesired events reported to the pharmacovigilance program of the Food and Drug Administration and associate signals to side effects. The ability of the classification method to associate specific in vitro signaling profiles to clinically relevant responses was corroborated using β2-adrenergic receptor ligands.
format Online
Article
Text
id pubmed-6733853
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67338532019-09-11 Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response Benredjem, Besma Gallion, Jonathan Pelletier, Dennis Dallaire, Paul Charbonneau, Johanie Cawkill, Darren Nagi, Karim Gosink, Mark Lukasheva, Viktoryia Jenkinson, Stephen Ren, Yong Somps, Christopher Murat, Brigitte Van Der Westhuizen, Emma Le Gouill, Christian Lichtarge, Olivier Schmidt, Anne Bouvier, Michel Pineyro, Graciela Nat Commun Article Signaling diversity of G protein-coupled (GPCR) ligands provides novel opportunities to develop more effective, better-tolerated therapeutics. Taking advantage of these opportunities requires identifying which effectors should be specifically activated or avoided so as to promote desired clinical responses and avoid side effects. However, identifying signaling profiles that support desired clinical outcomes remains challenging. This study describes signaling diversity of mu opioid receptor (MOR) ligands in terms of logistic and operational parameters for ten different in vitro readouts. It then uses unsupervised clustering of curve parameters to: classify MOR ligands according to similarities in type and magnitude of response, associate resulting ligand categories with frequency of undesired events reported to the pharmacovigilance program of the Food and Drug Administration and associate signals to side effects. The ability of the classification method to associate specific in vitro signaling profiles to clinically relevant responses was corroborated using β2-adrenergic receptor ligands. Nature Publishing Group UK 2019-09-09 /pmc/articles/PMC6733853/ /pubmed/31501422 http://dx.doi.org/10.1038/s41467-019-11875-6 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Benredjem, Besma
Gallion, Jonathan
Pelletier, Dennis
Dallaire, Paul
Charbonneau, Johanie
Cawkill, Darren
Nagi, Karim
Gosink, Mark
Lukasheva, Viktoryia
Jenkinson, Stephen
Ren, Yong
Somps, Christopher
Murat, Brigitte
Van Der Westhuizen, Emma
Le Gouill, Christian
Lichtarge, Olivier
Schmidt, Anne
Bouvier, Michel
Pineyro, Graciela
Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
title Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
title_full Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
title_fullStr Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
title_full_unstemmed Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
title_short Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
title_sort exploring use of unsupervised clustering to associate signaling profiles of gpcr ligands to clinical response
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733853/
https://www.ncbi.nlm.nih.gov/pubmed/31501422
http://dx.doi.org/10.1038/s41467-019-11875-6
work_keys_str_mv AT benredjembesma exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT gallionjonathan exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT pelletierdennis exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT dallairepaul exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT charbonneaujohanie exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT cawkilldarren exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT nagikarim exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT gosinkmark exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT lukashevaviktoryia exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT jenkinsonstephen exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT renyong exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT sompschristopher exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT muratbrigitte exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT vanderwesthuizenemma exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT legouillchristian exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT lichtargeolivier exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT schmidtanne exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT bouviermichel exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse
AT pineyrograciela exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse