Cargando…
Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response
Signaling diversity of G protein-coupled (GPCR) ligands provides novel opportunities to develop more effective, better-tolerated therapeutics. Taking advantage of these opportunities requires identifying which effectors should be specifically activated or avoided so as to promote desired clinical re...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733853/ https://www.ncbi.nlm.nih.gov/pubmed/31501422 http://dx.doi.org/10.1038/s41467-019-11875-6 |
_version_ | 1783450039059742720 |
---|---|
author | Benredjem, Besma Gallion, Jonathan Pelletier, Dennis Dallaire, Paul Charbonneau, Johanie Cawkill, Darren Nagi, Karim Gosink, Mark Lukasheva, Viktoryia Jenkinson, Stephen Ren, Yong Somps, Christopher Murat, Brigitte Van Der Westhuizen, Emma Le Gouill, Christian Lichtarge, Olivier Schmidt, Anne Bouvier, Michel Pineyro, Graciela |
author_facet | Benredjem, Besma Gallion, Jonathan Pelletier, Dennis Dallaire, Paul Charbonneau, Johanie Cawkill, Darren Nagi, Karim Gosink, Mark Lukasheva, Viktoryia Jenkinson, Stephen Ren, Yong Somps, Christopher Murat, Brigitte Van Der Westhuizen, Emma Le Gouill, Christian Lichtarge, Olivier Schmidt, Anne Bouvier, Michel Pineyro, Graciela |
author_sort | Benredjem, Besma |
collection | PubMed |
description | Signaling diversity of G protein-coupled (GPCR) ligands provides novel opportunities to develop more effective, better-tolerated therapeutics. Taking advantage of these opportunities requires identifying which effectors should be specifically activated or avoided so as to promote desired clinical responses and avoid side effects. However, identifying signaling profiles that support desired clinical outcomes remains challenging. This study describes signaling diversity of mu opioid receptor (MOR) ligands in terms of logistic and operational parameters for ten different in vitro readouts. It then uses unsupervised clustering of curve parameters to: classify MOR ligands according to similarities in type and magnitude of response, associate resulting ligand categories with frequency of undesired events reported to the pharmacovigilance program of the Food and Drug Administration and associate signals to side effects. The ability of the classification method to associate specific in vitro signaling profiles to clinically relevant responses was corroborated using β2-adrenergic receptor ligands. |
format | Online Article Text |
id | pubmed-6733853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67338532019-09-11 Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response Benredjem, Besma Gallion, Jonathan Pelletier, Dennis Dallaire, Paul Charbonneau, Johanie Cawkill, Darren Nagi, Karim Gosink, Mark Lukasheva, Viktoryia Jenkinson, Stephen Ren, Yong Somps, Christopher Murat, Brigitte Van Der Westhuizen, Emma Le Gouill, Christian Lichtarge, Olivier Schmidt, Anne Bouvier, Michel Pineyro, Graciela Nat Commun Article Signaling diversity of G protein-coupled (GPCR) ligands provides novel opportunities to develop more effective, better-tolerated therapeutics. Taking advantage of these opportunities requires identifying which effectors should be specifically activated or avoided so as to promote desired clinical responses and avoid side effects. However, identifying signaling profiles that support desired clinical outcomes remains challenging. This study describes signaling diversity of mu opioid receptor (MOR) ligands in terms of logistic and operational parameters for ten different in vitro readouts. It then uses unsupervised clustering of curve parameters to: classify MOR ligands according to similarities in type and magnitude of response, associate resulting ligand categories with frequency of undesired events reported to the pharmacovigilance program of the Food and Drug Administration and associate signals to side effects. The ability of the classification method to associate specific in vitro signaling profiles to clinically relevant responses was corroborated using β2-adrenergic receptor ligands. Nature Publishing Group UK 2019-09-09 /pmc/articles/PMC6733853/ /pubmed/31501422 http://dx.doi.org/10.1038/s41467-019-11875-6 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Benredjem, Besma Gallion, Jonathan Pelletier, Dennis Dallaire, Paul Charbonneau, Johanie Cawkill, Darren Nagi, Karim Gosink, Mark Lukasheva, Viktoryia Jenkinson, Stephen Ren, Yong Somps, Christopher Murat, Brigitte Van Der Westhuizen, Emma Le Gouill, Christian Lichtarge, Olivier Schmidt, Anne Bouvier, Michel Pineyro, Graciela Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response |
title | Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response |
title_full | Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response |
title_fullStr | Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response |
title_full_unstemmed | Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response |
title_short | Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response |
title_sort | exploring use of unsupervised clustering to associate signaling profiles of gpcr ligands to clinical response |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733853/ https://www.ncbi.nlm.nih.gov/pubmed/31501422 http://dx.doi.org/10.1038/s41467-019-11875-6 |
work_keys_str_mv | AT benredjembesma exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT gallionjonathan exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT pelletierdennis exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT dallairepaul exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT charbonneaujohanie exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT cawkilldarren exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT nagikarim exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT gosinkmark exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT lukashevaviktoryia exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT jenkinsonstephen exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT renyong exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT sompschristopher exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT muratbrigitte exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT vanderwesthuizenemma exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT legouillchristian exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT lichtargeolivier exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT schmidtanne exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT bouviermichel exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse AT pineyrograciela exploringuseofunsupervisedclusteringtoassociatesignalingprofilesofgpcrligandstoclinicalresponse |