Cargando…

A transcriptome-based phylogenetic study of hard ticks (Ixodidae)

Hard ticks are widely distributed across temperate regions, show strong variation in host associations, and are potential vectors of a diversity of medically important zoonoses, such as Lyme disease. To address unresolved issues with respect to the evolutionary relationships among certain species or...

Descripción completa

Detalles Bibliográficos
Autores principales: Charrier, N. Pierre, Hermouet, Axelle, Hervet, Caroline, Agoulon, Albert, Barker, Stephen C., Heylen, Dieter, Toty, Céline, McCoy, Karen D., Plantard, Olivier, Rispe, Claude
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733903/
https://www.ncbi.nlm.nih.gov/pubmed/31501478
http://dx.doi.org/10.1038/s41598-019-49641-9
Descripción
Sumario:Hard ticks are widely distributed across temperate regions, show strong variation in host associations, and are potential vectors of a diversity of medically important zoonoses, such as Lyme disease. To address unresolved issues with respect to the evolutionary relationships among certain species or genera, we produced novel RNA-Seq data sets for nine different Ixodes species. We combined this new data with 18 data sets obtained from public databases, both for Ixodes and non-Ixodes hard tick species, using soft ticks as an outgroup. We assembled transcriptomes (for 27 species in total), predicted coding sequences and identified single copy orthologues (SCO). Using Maximum-likelihood and Bayesian frameworks, we reconstructed a hard tick phylogeny for the nuclear genome. We also obtained a mitochondrial DNA-based phylogeny using published genome sequences and mitochondrial sequences derived from the new transcriptomes. Our results confirm previous studies showing that the Ixodes genus is monophyletic and clarify the relationships among Ixodes sub-genera. This work provides a baseline for studying the evolutionary history of ticks: we indeed found an unexpected acceleration of substitutions for mitochondrial sequences of Prostriata, and for nuclear and mitochondrial genes of two species of Rhipicephalus, which we relate with patterns of genome architecture and changes of life-cycle, respectively.