Cargando…
A comparison of automatic cell identification methods for single-cell RNA sequencing data
BACKGROUND: Single-cell transcriptomics is rapidly advancing our understanding of the cellular composition of complex tissues and organisms. A major limitation in most analysis pipelines is the reliance on manual annotations to determine cell identities, which are time-consuming and irreproducible....
Autores principales: | Abdelaal, Tamim, Michielsen, Lieke, Cats, Davy, Hoogduin, Dylan, Mei, Hailiang, Reinders, Marcel J. T., Mahfouz, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734286/ https://www.ncbi.nlm.nih.gov/pubmed/31500660 http://dx.doi.org/10.1186/s13059-019-1795-z |
Ejemplares similares
-
Hierarchical progressive learning of cell identities in single-cell data
por: Michielsen, Lieke, et al.
Publicado: (2021) -
scMoC: single-cell multi-omics clustering
por: Eltager, Mostafa, et al.
Publicado: (2022) -
Cell type matching across species using protein embeddings and transfer learning
por: Biharie, Kirti, et al.
Publicado: (2023) -
Predicting Cell Populations in Single Cell Mass Cytometry Data
por: Abdelaal, Tamim, et al.
Publicado: (2019) -
Single-cell reference mapping to construct and extend cell-type hierarchies
por: Michielsen, Lieke, et al.
Publicado: (2023)