Cargando…

Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis

BACKGROUND: There are evidences that chlorogenic acid (CGA) has antidepressant effects, however the underlying molecular mechanism has not been well understood. The aim of the study was to explore the neuroprotective effect of CGA on corticosterone (CORT)-induced PC 12 cells and its mechanism, espec...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Xiaowen, Zhou, Nian, Cheng, Jieyi, Shi, Xunlong, Huang, Hai, Zhou, Mingmei, Zhu, Haiyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734305/
https://www.ncbi.nlm.nih.gov/pubmed/31500666
http://dx.doi.org/10.1186/s40360-019-0336-4
Descripción
Sumario:BACKGROUND: There are evidences that chlorogenic acid (CGA) has antidepressant effects, however the underlying molecular mechanism has not been well understood. The aim of the study was to explore the neuroprotective effect of CGA on corticosterone (CORT)-induced PC 12 cells and its mechanism, especially the autophagy pathway. METHODS: PC12 cells were incubated with CORT (0, 100, 200, 400 or 800 μM) for 24 h, cell viability was measured by MTT assay. PC12 cells were cultured with 400 μM of CORT in the absence or presence of CGA (25 μg/ml) for 24 h, morphologies and specific marker of autophagosome were observed by transmission electron microscope (TEM) and confocal immunofluorescence microscopy, respectively. In addition, PC12 cells were treated with different doses of CGA (0, 6.25, 12.5, 25 or 50 μg/ml) with or without CORT (400 μM) for 24 h, cell viability and changes in the morphology were observed, and further analysis of apoptotic and autophagic proteins, and expression of AKT/mTOR signaling pathway were carried out by Western blot. Specific inhibitors of autophagy 3-Methyladenine (3-MA) and chloroquine (CQ) were added to the PC12 cells cultures to explore the potential role of autophagy in CORT-induced neuronal cell apoptosis. RESULTS: Besides decreasing PC12 cell activity, CORT could also induce autophagy and apoptosis of PC12 cells, while CGA could reverse these effects. In addition, CGA treatment regulated AKT/mTOR signaling pathway in PC12 cells. CGA, similar to 3-MA and QC, significantly inhibited CORT-induced apoptosis in PC12 cells. CONCLUSIONS: Our results provide a new molecular mechanism for the treatment of CORT-induced neurotoxicity by CGA, and suggest CGA may be a potential substance which is can alleviate depression.