Cargando…
nanite: using machine learning to assess the quality of atomic force microscopy-enabled nano-indentation data
BACKGROUND: Atomic force microscopy (AFM) allows the mechanical characterization of single cells and live tissue by quantifying force-distance (FD) data in nano-indentation experiments. One of the main problems when dealing with biological tissue is the fact that the measured FD curves can be distur...
Autores principales: | Müller, Paul, Abuhattum, Shada, Möllmert, Stephanie, Ulbricht, Elke, Taubenberger, Anna V., Guck, Jochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734308/ https://www.ncbi.nlm.nih.gov/pubmed/31500563 http://dx.doi.org/10.1186/s12859-019-3010-3 |
Ejemplares similares
-
An explicit model to extract viscoelastic properties of cells from AFM force-indentation curves
por: Abuhattum, Shada, et al.
Publicado: (2022) -
Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging
por: Schlüßler, Raimund, et al.
Publicado: (2018) -
Unbiased retrieval of frequency-dependent mechanical properties from noisy time-dependent signals
por: Abuhattum, Shada, et al.
Publicado: (2022) -
Early Detection of Cartilage Degeneration: A Comparison of Histology, Fiber Bragg Grating-Based Micro-Indentation, and Atomic Force Microscopy-Based Nano-Indentation
por: Hartmann, Bastian, et al.
Publicado: (2020) -
Compliant Substrates Enhance Macrophage Cytokine Release and NLRP3 Inflammasome Formation During Their Pro-Inflammatory Response
por: Escolano, Joan-Carles, et al.
Publicado: (2021)