Cargando…
A validated natural language processing algorithm for brain imaging phenotypes from radiology reports in UK electronic health records
BACKGROUND: Manual coding of phenotypes in brain radiology reports is time consuming. We developed a natural language processing (NLP) algorithm to enable automatic identification of brain imaging in radiology reports performed in routine clinical practice in the UK National Health Service (NHS). ME...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734359/ https://www.ncbi.nlm.nih.gov/pubmed/31500613 http://dx.doi.org/10.1186/s12911-019-0908-7 |
Sumario: | BACKGROUND: Manual coding of phenotypes in brain radiology reports is time consuming. We developed a natural language processing (NLP) algorithm to enable automatic identification of brain imaging in radiology reports performed in routine clinical practice in the UK National Health Service (NHS). METHODS: We used anonymized text brain imaging reports from a cohort study of stroke/TIA patients and from a regional hospital to develop and test an NLP algorithm. Two experts marked up text in 1692 reports for 24 cerebrovascular and other neurological phenotypes. We developed and tested a rule-based NLP algorithm first within the cohort study, and further evaluated it in the reports from the regional hospital. RESULTS: The agreement between expert readers was excellent (Cohen’s κ =0.93) in both datasets. In the final test dataset (n = 700) in unseen regional hospital reports, the algorithm had very good performance for a report of any ischaemic stroke [sensitivity 89% (95% CI:81–94); positive predictive value (PPV) 85% (76–90); specificity 100% (95% CI:0.99–1.00)]; any haemorrhagic stroke [sensitivity 96% (95% CI: 80–99), PPV 72% (95% CI:55–84); specificity 100% (95% CI:0.99–1.00)]; brain tumours [sensitivity 96% (CI:87–99); PPV 84% (73–91); specificity: 100% (95% CI:0.99–1.00)] and cerebral small vessel disease and cerebral atrophy (sensitivity, PPV and specificity all > 97%). We obtained few reports of subarachnoid haemorrhage, microbleeds or subdural haematomas. In 110,695 reports from NHS Tayside, atrophy (n = 28,757, 26%), small vessel disease (15,015, 14%) and old, deep ischaemic strokes (10,636, 10%) were the commonest findings. CONCLUSIONS: An NLP algorithm can be developed in UK NHS radiology records to allow identification of cohorts of patients with important brain imaging phenotypes at a scale that would otherwise not be possible. |
---|