Cargando…
A validated natural language processing algorithm for brain imaging phenotypes from radiology reports in UK electronic health records
BACKGROUND: Manual coding of phenotypes in brain radiology reports is time consuming. We developed a natural language processing (NLP) algorithm to enable automatic identification of brain imaging in radiology reports performed in routine clinical practice in the UK National Health Service (NHS). ME...
Autores principales: | Wheater, Emily, Mair, Grant, Sudlow, Cathie, Alex, Beatrice, Grover, Claire, Whiteley, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734359/ https://www.ncbi.nlm.nih.gov/pubmed/31500613 http://dx.doi.org/10.1186/s12911-019-0908-7 |
Ejemplares similares
-
Text mining brain imaging reports
por: Alex, Beatrice, et al.
Publicado: (2019) -
Accuracy of Electronic Health Record Data for Identifying Stroke Cases in Large-Scale Epidemiological Studies: A Systematic Review from the UK Biobank Stroke Outcomes Group
por: Woodfield, Rebecca, et al.
Publicado: (2015) -
Efficient Reuse of Natural Language Processing Models for Phenotype-Mention Identification in Free-text Electronic Medical Records: A Phenotype Embedding Approach
por: Wu, Honghan, et al.
Publicado: (2019) -
UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER
por: Denaxas, Spiros, et al.
Publicado: (2019) -
Challenges of linking to routine healthcare records in UK Biobank
por: Adamska, Ligia, et al.
Publicado: (2015)