Cargando…
Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model
Tendon tissue ruptures often require the replacement of damaged tissues. The use of auto- or allografts is notoriously limited due to the scarce supply and the high risks of immune adverse reactions. To overcome these limitations, tissue engineering (TE) has been considered a promising approach. Amo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735180/ https://www.ncbi.nlm.nih.gov/pubmed/31558905 http://dx.doi.org/10.1155/2019/5267479 |
_version_ | 1783450305175748608 |
---|---|
author | Bottagisio, Marta D'Arrigo, Daniele Talò, Giuseppe Bongio, Matilde Ferroni, Marco Boschetti, Federica Moretti, Matteo Lovati, Arianna B. |
author_facet | Bottagisio, Marta D'Arrigo, Daniele Talò, Giuseppe Bongio, Matilde Ferroni, Marco Boschetti, Federica Moretti, Matteo Lovati, Arianna B. |
author_sort | Bottagisio, Marta |
collection | PubMed |
description | Tendon tissue ruptures often require the replacement of damaged tissues. The use of auto- or allografts is notoriously limited due to the scarce supply and the high risks of immune adverse reactions. To overcome these limitations, tissue engineering (TE) has been considered a promising approach. Among several biomaterials, decellularized xenografts are available in large quantity and could represent a possible solution for tendon reconstruction. The present study is aimed at evaluating TE xenografts in Achilles tendon defects. Specifically, the ability to enhance the biomechanical functionality, while improving the graft interaction with the host, was tested. The combination of decellularized equine-derived tendon xenografts with or without the matrix repopulation with autologous bone marrow mesenchymal stem cells (BMSCs) under stretch-perfusion dynamic conditions might improve the side-to-side tendon reconstruction. Thirty-six New Zealand rabbits were used to create 2 cm long segmental defects of the Achilles tendon. Then, animals were implanted with autograft (AG) as the gold standard control, decellularized graft (DG), or in vitro tissue-engineered graft (TEG) and evaluated postoperatively at 12 weeks. After sacrifice, histological, immunohistochemical, biochemical, and biomechanical analyses were performed along with the matrix metalloproteinases. The results demonstrated the beneficial role of undifferentiated BMSCs loaded within decellularized xenografts undergoing a stretch-perfusion culture as an immunomodulatory weapon reducing the inflammatory process. Interestingly, AG and TEG groups exhibited similar results, behaved similarly, and showed a significant superior tissue healing compared to DG in terms of newly formed collagen fibres and biomechanical parameters. Whereas, DG demonstrated a massive inflammatory and giant cell response associated with graft destruction and necrosis, absence of type I and III collagen, and a higher amount of proteoglycans and MMP-2, thus unfavourably affecting the biomechanical response. In conclusion, this in vivo study suggests a potential use of the proposed tissue-engineered constructs for tendon reconstruction. |
format | Online Article Text |
id | pubmed-6735180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-67351802019-09-26 Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model Bottagisio, Marta D'Arrigo, Daniele Talò, Giuseppe Bongio, Matilde Ferroni, Marco Boschetti, Federica Moretti, Matteo Lovati, Arianna B. Stem Cells Int Research Article Tendon tissue ruptures often require the replacement of damaged tissues. The use of auto- or allografts is notoriously limited due to the scarce supply and the high risks of immune adverse reactions. To overcome these limitations, tissue engineering (TE) has been considered a promising approach. Among several biomaterials, decellularized xenografts are available in large quantity and could represent a possible solution for tendon reconstruction. The present study is aimed at evaluating TE xenografts in Achilles tendon defects. Specifically, the ability to enhance the biomechanical functionality, while improving the graft interaction with the host, was tested. The combination of decellularized equine-derived tendon xenografts with or without the matrix repopulation with autologous bone marrow mesenchymal stem cells (BMSCs) under stretch-perfusion dynamic conditions might improve the side-to-side tendon reconstruction. Thirty-six New Zealand rabbits were used to create 2 cm long segmental defects of the Achilles tendon. Then, animals were implanted with autograft (AG) as the gold standard control, decellularized graft (DG), or in vitro tissue-engineered graft (TEG) and evaluated postoperatively at 12 weeks. After sacrifice, histological, immunohistochemical, biochemical, and biomechanical analyses were performed along with the matrix metalloproteinases. The results demonstrated the beneficial role of undifferentiated BMSCs loaded within decellularized xenografts undergoing a stretch-perfusion culture as an immunomodulatory weapon reducing the inflammatory process. Interestingly, AG and TEG groups exhibited similar results, behaved similarly, and showed a significant superior tissue healing compared to DG in terms of newly formed collagen fibres and biomechanical parameters. Whereas, DG demonstrated a massive inflammatory and giant cell response associated with graft destruction and necrosis, absence of type I and III collagen, and a higher amount of proteoglycans and MMP-2, thus unfavourably affecting the biomechanical response. In conclusion, this in vivo study suggests a potential use of the proposed tissue-engineered constructs for tendon reconstruction. Hindawi 2019-08-29 /pmc/articles/PMC6735180/ /pubmed/31558905 http://dx.doi.org/10.1155/2019/5267479 Text en Copyright © 2019 Marta Bottagisio et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bottagisio, Marta D'Arrigo, Daniele Talò, Giuseppe Bongio, Matilde Ferroni, Marco Boschetti, Federica Moretti, Matteo Lovati, Arianna B. Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model |
title | Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model |
title_full | Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model |
title_fullStr | Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model |
title_full_unstemmed | Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model |
title_short | Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model |
title_sort | achilles tendon repair by decellularized and engineered xenografts in a rabbit model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735180/ https://www.ncbi.nlm.nih.gov/pubmed/31558905 http://dx.doi.org/10.1155/2019/5267479 |
work_keys_str_mv | AT bottagisiomarta achillestendonrepairbydecellularizedandengineeredxenograftsinarabbitmodel AT darrigodaniele achillestendonrepairbydecellularizedandengineeredxenograftsinarabbitmodel AT talogiuseppe achillestendonrepairbydecellularizedandengineeredxenograftsinarabbitmodel AT bongiomatilde achillestendonrepairbydecellularizedandengineeredxenograftsinarabbitmodel AT ferronimarco achillestendonrepairbydecellularizedandengineeredxenograftsinarabbitmodel AT boschettifederica achillestendonrepairbydecellularizedandengineeredxenograftsinarabbitmodel AT morettimatteo achillestendonrepairbydecellularizedandengineeredxenograftsinarabbitmodel AT lovatiariannab achillestendonrepairbydecellularizedandengineeredxenograftsinarabbitmodel |